Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ERC Synergy Grant for the Investigation of Ultracold Quantum Matter

19.12.2012
A team of research groups from Austria, France, Germany, and Israel receives 10 Million Euro for joint research on ultracold quantum matter.

For the first time the European Research Council (ERC) has introduced so-called Synergy Grants in 2012, which are intended to enable up to four scientists to collaborate on an innovative topic in order to jointly address complex research problems.

Out of more than 700 project applications from all scientific disciplines, only 11 teams have been selected for funding, corresponding to a success rate of only 1,5%. Among the winners is the project UQUAM (Ultracold Quantum Matter) of Immanuel Bloch (Chair of Quantum Optics, Ludwig-Maximilians-Universität Munich and Max- Planck-Institute of Quantum Optics, Garching), Jean Dalibard (Collège de France and Laboratoire Kastler Brossel, Paris), Ehud Altman (Weizmann-Institute of Science in Rehovot, Israel), and Peter Zoller (Institute for Theoretical Physics, University of Innsbruck). For the funding period of six years the project will receive 10 million Euro of support.

One of the core components of the new project will be the construction of a novel joint experimental setup with which the researchers aim at reaching a qualitatively new level in understanding the complex behaviour of quantum matter. The two experimentalists Immanuel Bloch and Jean Dalibard, and the two theoretical physicists Ehud Altman and Peter Zoller belong to worldwide renown groups in this field which deals with the control, manipulation, and investigation of systems that contain thousands of quantum particles, at temperatures near absolute zero. Having been in close scientific contact for more than a decade, with mutual exchange of young doctoral candidates and postdoctoral scientists, the researchers now want to combine the knowledge and the technical know-how acquired in each group.
“Some of the different techniques developed in each laboratory are working independently of each other, but we face the big challenge of bringing them together in one experiment in order to provide entirely new possibilities for observing and controlling quantum systems,” Bloch explains. “Joining our forces to design and build this new setup will allow us to take higher risk options, both in terms of technical choices and of ultimate goals that can be targeted”, Dalibard adds.

The quantum many-body systems investigated here are versatile models for real material systems. In the future the researchers also plan to explore connections between ultracold quantum matter and high energy and nuclear physics. By bringing the systems into unexplored parameter regimes, the team hopes to find states of matter that do not exist in our everyday nature. “In the wide range of phenomena it will allow to explore and as a test bed for theoretical ideas the planned experiment is a theorist’s dream”, says Altman. A main task for the two theoreticians will be to explore the broad range of quantum phases that can be created in this way and identify key questions to be addressed in the experiment. All members of the four teams will work together closely on the evaluation and interpretation of the experimental data. “It is exciting for a theorist to work in a team at the interface between novel and fundamental theoretical concepts and ideas, and the experimental effort by leading laboratories to see new quantum phenomena.“ Zoller points out.

”We are indeed very happy to have been awarded with a Synergy Grant following a very competitive selection process” Bloch says and continues. “The ERC synergy grant offers entirely new possibilities for intense cooperation, with unique research opportunities for junior scientists.” [OM]

Contacts:

Prof. Immanuel Bloch
Chair of Quantum Optics
LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 (0) 89 / 32905 -138
E-mail: immanuel.bloch@mpq.mpg.de
www.quantum-munich.de

Prof. Ehud Altman
Department of Condensed Matter Physics,
The Weizmann Institute of Science
Rehovot, 76100, Israel
Phone: +972(0) 8 9343125
Fax: +33 (0) 8 9344477
E-mail: ehud.altman@weizmann.ac.il
www.weizmann.ac.il/condmat/altman.html

Prof. Jean Dalibard
Laboratoire Kastler Brossel
24 rue Lhomond, 75005 Paris, France
Phone: +33 (0) 1 44 32 2534
Fax: +33 (0) 1 44 32 3434
E-mail: jean.dalibard@lkb.ens.fr
www.phys.ens.fr/~dalibard

Prof. Peter Zoller
Institute for Theoretical Physics,
University of Innsbruck
Technikerstr. 25, 6020 Innsbruck, Austria
Phone: +43 (512) 507-4780
Fax: +43 (512) 507-9815
E-mail: peter.zoller@uibk.ac.at
www.iqoqi.at/people

Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0) 89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>