Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ERC Synergy Grant for the Investigation of Ultracold Quantum Matter

19.12.2012
A team of research groups from Austria, France, Germany, and Israel receives 10 Million Euro for joint research on ultracold quantum matter.

For the first time the European Research Council (ERC) has introduced so-called Synergy Grants in 2012, which are intended to enable up to four scientists to collaborate on an innovative topic in order to jointly address complex research problems.

Out of more than 700 project applications from all scientific disciplines, only 11 teams have been selected for funding, corresponding to a success rate of only 1,5%. Among the winners is the project UQUAM (Ultracold Quantum Matter) of Immanuel Bloch (Chair of Quantum Optics, Ludwig-Maximilians-Universität Munich and Max- Planck-Institute of Quantum Optics, Garching), Jean Dalibard (Collège de France and Laboratoire Kastler Brossel, Paris), Ehud Altman (Weizmann-Institute of Science in Rehovot, Israel), and Peter Zoller (Institute for Theoretical Physics, University of Innsbruck). For the funding period of six years the project will receive 10 million Euro of support.

One of the core components of the new project will be the construction of a novel joint experimental setup with which the researchers aim at reaching a qualitatively new level in understanding the complex behaviour of quantum matter. The two experimentalists Immanuel Bloch and Jean Dalibard, and the two theoretical physicists Ehud Altman and Peter Zoller belong to worldwide renown groups in this field which deals with the control, manipulation, and investigation of systems that contain thousands of quantum particles, at temperatures near absolute zero. Having been in close scientific contact for more than a decade, with mutual exchange of young doctoral candidates and postdoctoral scientists, the researchers now want to combine the knowledge and the technical know-how acquired in each group.
“Some of the different techniques developed in each laboratory are working independently of each other, but we face the big challenge of bringing them together in one experiment in order to provide entirely new possibilities for observing and controlling quantum systems,” Bloch explains. “Joining our forces to design and build this new setup will allow us to take higher risk options, both in terms of technical choices and of ultimate goals that can be targeted”, Dalibard adds.

The quantum many-body systems investigated here are versatile models for real material systems. In the future the researchers also plan to explore connections between ultracold quantum matter and high energy and nuclear physics. By bringing the systems into unexplored parameter regimes, the team hopes to find states of matter that do not exist in our everyday nature. “In the wide range of phenomena it will allow to explore and as a test bed for theoretical ideas the planned experiment is a theorist’s dream”, says Altman. A main task for the two theoreticians will be to explore the broad range of quantum phases that can be created in this way and identify key questions to be addressed in the experiment. All members of the four teams will work together closely on the evaluation and interpretation of the experimental data. “It is exciting for a theorist to work in a team at the interface between novel and fundamental theoretical concepts and ideas, and the experimental effort by leading laboratories to see new quantum phenomena.“ Zoller points out.

”We are indeed very happy to have been awarded with a Synergy Grant following a very competitive selection process” Bloch says and continues. “The ERC synergy grant offers entirely new possibilities for intense cooperation, with unique research opportunities for junior scientists.” [OM]

Contacts:

Prof. Immanuel Bloch
Chair of Quantum Optics
LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 (0) 89 / 32905 -138
E-mail: immanuel.bloch@mpq.mpg.de
www.quantum-munich.de

Prof. Ehud Altman
Department of Condensed Matter Physics,
The Weizmann Institute of Science
Rehovot, 76100, Israel
Phone: +972(0) 8 9343125
Fax: +33 (0) 8 9344477
E-mail: ehud.altman@weizmann.ac.il
www.weizmann.ac.il/condmat/altman.html

Prof. Jean Dalibard
Laboratoire Kastler Brossel
24 rue Lhomond, 75005 Paris, France
Phone: +33 (0) 1 44 32 2534
Fax: +33 (0) 1 44 32 3434
E-mail: jean.dalibard@lkb.ens.fr
www.phys.ens.fr/~dalibard

Prof. Peter Zoller
Institute for Theoretical Physics,
University of Innsbruck
Technikerstr. 25, 6020 Innsbruck, Austria
Phone: +43 (512) 507-4780
Fax: +43 (512) 507-9815
E-mail: peter.zoller@uibk.ac.at
www.iqoqi.at/people

Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0) 89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>