Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ERC Grant Awarded to Physicist Florian Schreck

Experimental physicist Florian Schreck from the Institute of Quantum Optics and Quantum Information (IQOQI) in Innsbruck has received an ERC Consolidator Grant awarded by the European Research Council.

It is funded with up to two million Euro. ERC grants are the most important individual grants for researchers in Europe. In December, after nine successful years in Austria, Florian Schreck will start his post as Professor at the University of Amsterdam.

This year the European Research Council (ERC) awards the very first ERC Consolidator Grants for promising researchers with seven to twelve years research experience. Florian Schreck has received this grant for his concepts to study quantum many-body systems. In June another physicist, Oriol Romero-Isart who has just started working in Innsbruck, also received a highly valued ERC grant: the ERC Starting Grant.

“We are very excited about these awards,” says the Director of the IQOQI Rudolf Grimm. “Florian Schreck has achieved outstanding research results in Innsbruck. This ERC grant and the professorship in Amsterdam offer him the best opportunities to successfully carry on with his research. The fact that our researchers are highly sought after internationally and are awarded with the most highly prized international awards and grants, is once again a notable recognition for physics research in Innsbruck.”

Deep view into the quantum world
Ensembles consisting of many particles show behavior that cannot be deduced simply from equations describing each individual particle. “In fact, in many-body quantum physics classical computers cannot achieve this at all in most cases,” explains Florian Schreck. “That is why we need to understand these systems experimentally.” For example, in a laboratory, physicists are able to mimic simple theoretical models of solid body physics with ultracold quantum gases. “We can do this because all system parameters are well controlled and because we have sophisticated measurement methods,” says Schreck. The experimental physicist works with quantum gases consisting of strontium atoms. In 2009 his research team in Innsbruck produced the first strontium Bose-Einstein condensate worldwide; and in 2012 Schreck and his team were able to produce a strontium Bose-Einstein condensate using only laser cooling. This successful research work has been recognized internationally and is also the basis for his research planned with the ERC Consolidator Grant funds.
New possibilities
The alkaline-earth element strontium, used by Florian Schreck, has two electrons in its outer shell while the majority of other quantum gas experiments use simpler alkaline atoms that have only one electron in the outer shell. The two outer shell electrons in strontium have many useful properties such as broad and narrow optical transitions and metastable states, which allow the investigation of completely new phenomena. Florian Schreck and his team are particularly interested in quantum magnetism and quantum Hall physics. Understanding these phenomena opens up new possibilities for precision measurement with atomic clocks, for example. “If we are able to better understand quantum physics of many-body systems, we may also be able to create new materials whose properties will be completely distinct from other known materials,” says Florian Schreck with a view into the future. “Examples are new types of superconductors, new magnetic materials and robust quantum information storage devices.“
About Florian Schreck
Florian Schreck (41) was born in Constance, Germany. He studied physics at the University of Constance and University of Grenoble. After he received a PhD in Paris and completed a two year research period in the USA, he started working with Prof. Rudolf Grimm's research group in Innsbruck in 2004. In 2010 he received the START Prize, the highest valued research award for junior researchers in Austria. Florian Schreck has been recruited as Professor for Experimental Quantum Physics at the Van der Waals-Zeeman Insitute for Experimental Physics at the University of Amsterdam. He is succeeding Prof. Jook Walraven, who is a pioneer in the field of quantum gases. Florian Schreck and his research group is moving the experimental setup to Amsterdam at the beginning of December and he is also taking his team from the IQOQI with him.
Dr. Florian Schreck
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Phone: +43 512 507 4761
Christian Flatz
Public Relations
Phone: +43 676 872532022

Dr. Christian Flatz | Universität Innsbruck
Further information:

More articles from Awards Funding:

nachricht TIB advances implementation of transition towards Open Access in high energy physics
13.03.2018 | Technische Informationsbibliothek (TIB)

nachricht Additional 5 Million Euro Funding for Aging Research in Jena, Germany
09.03.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>