Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ERC Grant Awarded to Physicist Florian Schreck

25.11.2013
Experimental physicist Florian Schreck from the Institute of Quantum Optics and Quantum Information (IQOQI) in Innsbruck has received an ERC Consolidator Grant awarded by the European Research Council.

It is funded with up to two million Euro. ERC grants are the most important individual grants for researchers in Europe. In December, after nine successful years in Austria, Florian Schreck will start his post as Professor at the University of Amsterdam.

This year the European Research Council (ERC) awards the very first ERC Consolidator Grants for promising researchers with seven to twelve years research experience. Florian Schreck has received this grant for his concepts to study quantum many-body systems. In June another physicist, Oriol Romero-Isart who has just started working in Innsbruck, also received a highly valued ERC grant: the ERC Starting Grant.

“We are very excited about these awards,” says the Director of the IQOQI Rudolf Grimm. “Florian Schreck has achieved outstanding research results in Innsbruck. This ERC grant and the professorship in Amsterdam offer him the best opportunities to successfully carry on with his research. The fact that our researchers are highly sought after internationally and are awarded with the most highly prized international awards and grants, is once again a notable recognition for physics research in Innsbruck.”

Deep view into the quantum world
Ensembles consisting of many particles show behavior that cannot be deduced simply from equations describing each individual particle. “In fact, in many-body quantum physics classical computers cannot achieve this at all in most cases,” explains Florian Schreck. “That is why we need to understand these systems experimentally.” For example, in a laboratory, physicists are able to mimic simple theoretical models of solid body physics with ultracold quantum gases. “We can do this because all system parameters are well controlled and because we have sophisticated measurement methods,” says Schreck. The experimental physicist works with quantum gases consisting of strontium atoms. In 2009 his research team in Innsbruck produced the first strontium Bose-Einstein condensate worldwide; and in 2012 Schreck and his team were able to produce a strontium Bose-Einstein condensate using only laser cooling. This successful research work has been recognized internationally and is also the basis for his research planned with the ERC Consolidator Grant funds.
New possibilities
The alkaline-earth element strontium, used by Florian Schreck, has two electrons in its outer shell while the majority of other quantum gas experiments use simpler alkaline atoms that have only one electron in the outer shell. The two outer shell electrons in strontium have many useful properties such as broad and narrow optical transitions and metastable states, which allow the investigation of completely new phenomena. Florian Schreck and his team are particularly interested in quantum magnetism and quantum Hall physics. Understanding these phenomena opens up new possibilities for precision measurement with atomic clocks, for example. “If we are able to better understand quantum physics of many-body systems, we may also be able to create new materials whose properties will be completely distinct from other known materials,” says Florian Schreck with a view into the future. “Examples are new types of superconductors, new magnetic materials and robust quantum information storage devices.“
About Florian Schreck
Florian Schreck (41) was born in Constance, Germany. He studied physics at the University of Constance and University of Grenoble. After he received a PhD in Paris and completed a two year research period in the USA, he started working with Prof. Rudolf Grimm's research group in Innsbruck in 2004. In 2010 he received the START Prize, the highest valued research award for junior researchers in Austria. Florian Schreck has been recruited as Professor for Experimental Quantum Physics at the Van der Waals-Zeeman Insitute for Experimental Physics at the University of Amsterdam. He is succeeding Prof. Jook Walraven, who is a pioneer in the field of quantum gases. Florian Schreck and his research group is moving the experimental setup to Amsterdam at the beginning of December and he is also taking his team from the IQOQI with him.
Contact:
Dr. Florian Schreck
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Phone: +43 512 507 4761
Email: florian.schreck@oeaw.ac.at
Web: http://www.strontiumbec.com/
Christian Flatz
Public Relations
Phone: +43 676 872532022
Email: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.oeaw.ac.at
http://www.strontiumbec.com/

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>