Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ERC Advanced Grant for Meinrad Busslinger

Meinrad Busslinger, Senior Scientist at the Research Institute of Molecular Pathology (IMP) in Vienna, has been selected to receive an Advanced Investigator Grant by the European Research Council ERC. The grant is worth just under 2.5 Million Euro and will be paid out over a period of five years. It will fund the project “LymphoControl” that investigates the development of immune cells.

ERC Advanced Grants allow exceptional established research leaders to pursue ground-breaking, high-risk projects that open new directions in their respective research fields or other domains. They have been awarded for the fourth time this year. 2284 applications were submitted following the last call.

The grant will fund a project entitled "Transcriptional networks controlling lymphocyte development", or “LymphoControl” in short. The aim of the project is to elucidate how transcription factors regulate the development of B- and T-lymphocytes. These white blood cells are the main players in the body’s adaptive immune system.

They are derived from stem cells in the bone marrow and undergo several stages of differentiation before becoming fully functional, mature lymphocytes of the B- or T-cell lineage. Transcription factors are regulatory proteins encoded in the genome that control key stages in this process. Deregulation of the transcriptional control can severely disrupt the programmed cell fate and cause certain types of blood cancer.

Meinrad Busslinger has a long record in immunological research. He was the first to identify a critical factor, named Pax-5, which activates a B cell specific program in the precursor cells and suppresses alternative pathways. Pax-5 is also involved in the development of acute lymphoblastic leukemia in humans.

The project “LymphoControl” will build on previous research efforts, such as the creation of transgenic mice that carry molecular “tags” at the ends of transcription factors.

Busslinger is excited about the European commitment to basic research: “The ERC grant will allow us to carry out a project which requires massive human and technical resources. We have already established the required know-how and infrastructure, owing to the Austrian Science Fund and our sponsor Boehringer Ingelheim. Now we can really take full advantage of the exceptional facilities at the IMP.” The grant will also open career-paths for young researchers. Six additional scientists will be employed under the ERC-funded project.

Meinrad Busslinger was born in Switzerland in 1952. He studied Biochemistry at the ETH Zurich and obtained a doctorate in molecular biology from the University of Zurich. Following postdoctoral studies at the MRC Institute Mill Hill, London, he became a group leader at the University of Zurich. In 1987, he followed Max Birnstiel to the newly founded Research Institute of Molecular Pathology (IMP) in Vienna.

Busslinger is a Senior Scientist and Director of Academic Affairs at the IMP, Professor at the University of Vienna and a full member of the Austrian Academy of Sciences and of the European Molecular Biology Organisation EMBO. He has published over 130 papers in peer-reviewed journals and serves on the editorial boards of several scientific journals. Busslinger was awarded the Wittgenstein prize of the Austrian government in 2001 and the Virchow Medal by the University of Würzburg in 2010.

The recent allocation raises the number of ERC Grants awarded to IMP faculty to six: Barry Dickson succeeded in securing an advanced grant in the first round of evaluations in 2008. Stefan Westermann, Alexander Stark, Andrew Straw and Manuel Zimmer received ERC Starting Grants.

The Research Institute for Molecular Pathology carries out basic biomedical research in Vienna, Austria. Its main sponsor is Boehringer Ingelheim. Some 200 researchers from over 30 countries study life at molecular and cellular levels, information processing and storage in neural circuits, mechanisms of development and disease and interdisciplinary topics. The aim is a thorough understanding of complex biological processes that could lead to the development of new therapeutic concepts.

IMP – Research Institute of Molecular Pathology
Dr. Heidemarie Hurtl, Communications
Tel. +43 1 797 30 – 3625
Mobile:+43 (0)664 8247910
Scientific Contact
Prof. Meinrad Busslinger

Dr. Heidemarie Hurtl | idw
Further information:

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>