Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EMBO Gold Medal 2014 awarded to Sophie Martin

23.04.2014

EMBO today announced Sophie Martin of the University of Lausanne, Switzerland, as the winner of the 2014 EMBO Gold Medal. The award acknowledges her work to understand the molecular events that define the organization and development of the cell.

Martin has been working for the past 15 years to understand cellular polarity, in particular the way in which the spatial organization of cells contributes to cell size and cell division. In the last 11 years, she has been using fission yeast, which grow as single, rod-shaped cells, as a model system for her investigations.

In 2009, Martin discovered that a protein kinase called Pom1, which forms concentration gradients that originate from each end of the cell, regulates progression through the cell cycle. Martin proposed a model for how Pom1 gradients provide spatial information that prevents fission yeast cells from dividing until they reach a sufficient length.1 This work renewed interest in the mechanisms of regulation of cell size.

Earlier work by Martin and colleagues identified a protein present on the growing ends of microtubules – the tube-like structures critical for shaping cells – and showed that this protein binds to an actin nucleation factor. Her work revealed a potential mechanism by which microtubules direct where the actin cytoskeleton promotes cell growth. 2

“From early in her career, Sophie has demonstrated exceptional and consistent scientific achievement in molecular and cell biology,” said EMBO Member Daniel St Johnston, who supervised Martin when she was a PhD student studying cell polarization in Drosophila at the Wellcome Trust/Cancer Research UK Gurdon Institute at the University of Cambridge, England. “She has also demonstrated a remarkable talent that includes a proven ability to change research fields and work on different model organisms while maintaining leadership roles in each of her chosen scientific areas.”

Martin’s earlier research on Drosophila focused on LKB1, a homologue of a human tumour suppressor protein. Her study revealed that loss of lkb1 causes defects in cell polarity and tissue disorganization. This work was one of the first to propose that the loss of cell polarity contributes to the formation of tumours, as individuals affected by Peutz-Jeghers syndrome, which is caused by lkb1 mutations, have cancerous intestinal polyps. 3

“It is an immense honour to receive such a prestigious award,” said the prizewinner upon hearing the news. “I have always been fascinated by how biological processes are spatially organized within cells. I feel incredibly lucky not only to have the freedom to study this basic problem but to be rewarded for it.” She added: “I am extremely grateful to past and present colleagues who have contributed to this work through their insight and support.”

“Sophie Martin is a superb scientist. She is also a very active citizen of the scientific community, both locally and internationally,” stated EMBO Member Pierre Gönczy from the Swiss Institute for Experimental Cancer Research (ISREC) at the School of Life Sciences of the Swiss Federal Institute of Technology in Lausanne (EPFL).

Sophie Martin will receive the EMBO Gold Medal and an award of 10,000 Euros on 2 September 2014 at The FEBS-EMBO Meeting in Paris where she will also give a lecture about her research.

1. Martin and Berthelot-Grosjean (2009) Nature 459: 782-783.

2. Martin et al. (2005) Developmental Cell 8: 479-491.

3. Martin and St Johnston (2003) Nature 421: 379-384.

CAREER STAGES

Sophie Martin received her PhD from the University of Cambridge in 2003 for her work in Daniel St Johnston’s group at the Gurdon Institute on the molecular mechanisms of cell polarization in Drosophila. She pursued postdoctoral training at Columbia University in New York in the laboratory of Dr. Fred Chang where she studied the cytoskeleton in fission yeast. In 2007, Martin joined the Center for Integrative Genomics at the University of Lausanne as a Swiss National Science Foundation Professor. She was appointed Associate Professor at the Department of Fundamental Microbiology at the University of Lausanne in 2010. In 2009, she was elected an EMBO Young Investigator.

Sophie Martin, 38, received the Women in Cell Biology Junior Award in 2012 from the American Society of Cell Biology. She is the 2014 recipient of the Friedrich Miescher Award. Martin was awarded a European Research Council Starting Grant in 2010 to study the contribution of the spatial organization of cells to the cell cycle.

ABOUT EMBO

EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.


For more information: www.embo.org

Weitere Informationen:

http://www.embo.org/news/press-releases/press-releases-2014/embo-gold-medal-2014...

Yvonne Kaul | EMBO

Further reports about: Biology Cancer Cell Drosophila EMBO actin cytoskeleton microtubules polarity polarization spatial

More articles from Awards Funding:

nachricht “Next Generation of Science Journalists” Award: Applications now open
21.05.2015 | World Health Summit

nachricht Connecting science with society - EU boost for polar science
19.05.2015 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>