Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EMBO Gold Medal 2014 awarded to Sophie Martin

23.04.2014

EMBO today announced Sophie Martin of the University of Lausanne, Switzerland, as the winner of the 2014 EMBO Gold Medal. The award acknowledges her work to understand the molecular events that define the organization and development of the cell.

Martin has been working for the past 15 years to understand cellular polarity, in particular the way in which the spatial organization of cells contributes to cell size and cell division. In the last 11 years, she has been using fission yeast, which grow as single, rod-shaped cells, as a model system for her investigations.

In 2009, Martin discovered that a protein kinase called Pom1, which forms concentration gradients that originate from each end of the cell, regulates progression through the cell cycle. Martin proposed a model for how Pom1 gradients provide spatial information that prevents fission yeast cells from dividing until they reach a sufficient length.1 This work renewed interest in the mechanisms of regulation of cell size.

Earlier work by Martin and colleagues identified a protein present on the growing ends of microtubules – the tube-like structures critical for shaping cells – and showed that this protein binds to an actin nucleation factor. Her work revealed a potential mechanism by which microtubules direct where the actin cytoskeleton promotes cell growth. 2

“From early in her career, Sophie has demonstrated exceptional and consistent scientific achievement in molecular and cell biology,” said EMBO Member Daniel St Johnston, who supervised Martin when she was a PhD student studying cell polarization in Drosophila at the Wellcome Trust/Cancer Research UK Gurdon Institute at the University of Cambridge, England. “She has also demonstrated a remarkable talent that includes a proven ability to change research fields and work on different model organisms while maintaining leadership roles in each of her chosen scientific areas.”

Martin’s earlier research on Drosophila focused on LKB1, a homologue of a human tumour suppressor protein. Her study revealed that loss of lkb1 causes defects in cell polarity and tissue disorganization. This work was one of the first to propose that the loss of cell polarity contributes to the formation of tumours, as individuals affected by Peutz-Jeghers syndrome, which is caused by lkb1 mutations, have cancerous intestinal polyps. 3

“It is an immense honour to receive such a prestigious award,” said the prizewinner upon hearing the news. “I have always been fascinated by how biological processes are spatially organized within cells. I feel incredibly lucky not only to have the freedom to study this basic problem but to be rewarded for it.” She added: “I am extremely grateful to past and present colleagues who have contributed to this work through their insight and support.”

“Sophie Martin is a superb scientist. She is also a very active citizen of the scientific community, both locally and internationally,” stated EMBO Member Pierre Gönczy from the Swiss Institute for Experimental Cancer Research (ISREC) at the School of Life Sciences of the Swiss Federal Institute of Technology in Lausanne (EPFL).

Sophie Martin will receive the EMBO Gold Medal and an award of 10,000 Euros on 2 September 2014 at The FEBS-EMBO Meeting in Paris where she will also give a lecture about her research.

1. Martin and Berthelot-Grosjean (2009) Nature 459: 782-783.

2. Martin et al. (2005) Developmental Cell 8: 479-491.

3. Martin and St Johnston (2003) Nature 421: 379-384.

CAREER STAGES

Sophie Martin received her PhD from the University of Cambridge in 2003 for her work in Daniel St Johnston’s group at the Gurdon Institute on the molecular mechanisms of cell polarization in Drosophila. She pursued postdoctoral training at Columbia University in New York in the laboratory of Dr. Fred Chang where she studied the cytoskeleton in fission yeast. In 2007, Martin joined the Center for Integrative Genomics at the University of Lausanne as a Swiss National Science Foundation Professor. She was appointed Associate Professor at the Department of Fundamental Microbiology at the University of Lausanne in 2010. In 2009, she was elected an EMBO Young Investigator.

Sophie Martin, 38, received the Women in Cell Biology Junior Award in 2012 from the American Society of Cell Biology. She is the 2014 recipient of the Friedrich Miescher Award. Martin was awarded a European Research Council Starting Grant in 2010 to study the contribution of the spatial organization of cells to the cell cycle.

ABOUT EMBO

EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.


For more information: www.embo.org

Weitere Informationen:

http://www.embo.org/news/press-releases/press-releases-2014/embo-gold-medal-2014...

Yvonne Kaul | EMBO

Further reports about: Biology Cancer Cell Drosophila EMBO actin cytoskeleton microtubules polarity polarization spatial

More articles from Awards Funding:

nachricht CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research
24.05.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>