Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics made of plastic

21.12.2011
The "Deutscher Zukunftspreis 2011" was won by a team comprising existing and former Fraunhofer researchers. Professor Karl Leo, Dr. Jan Blochwitz-Nimoth and Dr. Martin Pfeiffer were honored for their pioneering achievements in the field of organic electronics.

When the concept was first proposed, it was dismissed as being unrealizable: “It’ll never work,” commented one expert assessor of an application for research funding. Today, 15 years later, the physicist Professor Karl Leo and two of his colleagues have been presented with the "Deutscher Zukunftspreis", one of Germany’s most prestigious research awards, for what was once a highly controversial idea. Leo, director of the Fraunhofer Institute for Photonic Microsystems IPMS in Dresden, has devoted most of his career to organic electronics. Until now, most electronic components have been made of inorganic silicon. The brittle material is a good semiconductor, but its manufacture requires a highly sophisticated process. It involves growing large crystals at high temperatures and then cutting them into thin slices known as wafers.

The more elegant solution is to use an organic material, a type of dye commonly used in the production of road signs. Such materials have the advantage that they can be applied as a coating on flexible films and other substrates. This gives rise to endless new possibilities, such as displays that can be rolled up and carried in a vest pocket or switchable window panes that light up at night to illuminate rooms while hardly consuming any electricity. On the other hand, organic dyes are poor electrical conductors. But this is where the once-mocked ingenious idea comes into play: their less-than-satisfactory conductivity can be increased by doping, i.e. adding a small amount of another chemical substance. After years of experiments, the researchers have succeeded in creating materials with an electrical conductivity a million and more times greater than the original dyes, with a doping ratio of no more than one percent.

The "Deutscher Zukunftspreis 2011", endowed with 250,000 euros, has been awarded by the President of the Federal Republic of Germany every year since 1997. It honors outstanding innovations that have made the transition from the research laboratory to industrial practice, thus helping to create jobs. Fraunhofer is a frequent winner of this prize, no doubt because it operates precisely at this interface between the world of research and the commercial market. This time, the jury chose to honor organic electronics, which Leo describes as a technology “that will revolutionize our lives”.

The ultrathin semiconductor coatings have already made their way into mass production. They are equally versatile as the silicon chips that preceded them, for instance converting electrical energy into light just as easily as they convert sunlight into electricity. Novaled AG has adopted the first approach, using the technology to produce materials for displays and lamps, while Heliatek GmbH has chosen to focus on photovoltaics. Both of these companies are spinoffs created by former members of Professor Leo’s research team. By now they employ a total of nearly 200 people, and work closely together with other Dresden-based companies in a technology network. This year’s Zukunftspreis is shared by the founders of these two spinoffs, Jan Blochwitz-Nimoth (Novaled) and Martin Pfeiffer (Heliatek), and their mentor Professor Leo. Novaled AG is slightly further ahead in terms of marketing: the company is already mass-producing materials for cellphone displays. In two or three years’ time, it intends to start supplying materials for ultraflat TV screens that display true-to-life colors and consume a minimum of energy. “OLED displays combine the best qualities of LED and plasma screens, the two technologies currently available,” says Blochwitz-Nimroth. They are more energy-efficient than plasma TVs and deliver sharper images than LED technology, because they don’t need backlighting.

Solar cells made of organic materials have not yet reached the mass market. Heliatek GmbH expects to start production sometime next year. The company’s latest prototypes have an efficiency of ten percent, which is not yet high enough to compete with conventional silicon cells. “But in the longer term we will reach efficiencies approaching 20 percent”, Professor Leo states. Moreover, organic cells have other advantages compared with silicon technology, foremost among them a simpler – and therefore cheaper – manufacturing process.

The method employed by Karl Leo and his prize-winning former colleagues involves depositing microscopically thin layers of the organic material on a substrate. These coatings have a thickness of no more than one fifth of a micrometer – one thousand times thinner than in conventional solar cells. Only about a gram of semiconductor material is needed to coat a surface area of one square meter – in a process that takes place at room temperature, not at the 1,000 or so degrees Celsius required to produce inorganic cells.

This not only saves energy but also allows PET films to be used as the substrate, instead of the heat-resistant glass that was previously the only option. PET is the same plastic used to make bottles for soft drinks. It is cheap, light and flexible. The prize-winners have developed a continuous process based on roll-to-roll technology that enables the solar cells to be manufactured cheaply in large numbers. The resulting lightweight modules can be installed on roofs too weak to support the weight of standard photovoltaic panels.

Before making its final choice, the jury had shortlisted three projects as potential winners of the "Deutscher Zukunftspreis". A second project rooted in Fraunhofer research was among this year’s finalists, competing alongside the organic electronics team. These researchers have developed an advanced photovoltaic technology, known as “concentrated photovoltaics (CPV)”, which consists of very-high-efficiency solar cells and sun-tracking concentrator modules. The nominated team comprised Andreas W. Bett, deputy director of the Fraunhofer Institute for Solar Energy Systems ISE, Hansjörg Lerchenmüller from Soitec Solar and Klaus-Dieter Rasch from AZUR SPACE Solar Power.

It was thus against such strong competitors that the organic electronics team led by Professor Leo won the "Deutscher Zukunftspreis 2011". German President Christian Wulff presented the award to Professor Karl Leo, Dr. Jan Blochwitz-Nimoth and Dr. Martin Pfeiffer in mid-December.

Prof. Karl Leo | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/electronics-made-of-plastic.html

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>