Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EFTF Young Scientist Award for Prof Tobias Kippenberg

10.05.2011
For the development of planar frequency combs Professor Tobias J. Kippenberg, previous leader of the independent research group “Laboratory of Photonics and Quantum Measurements” at the Max Planck Institute of Quantum Optics in Garching (near Munich) and today associate professor at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, is presented with the EFTF Young Scientist Award of the European Frequency and Time Forum (EFTF).

Scientists under the age of 40 are honoured with this award sponsored by the Societé Francaise des Microtechniques et de Chronométrie for outstanding advances in the field of time and frequency metrology.

The Prize has been awarded to Professor Kippenberg in May 2011 in San Francisco on the occasion of the International Frequency Control Symposium for his “contributions to optical frequency metrology by the demonstration of monolithic micro resonator frequency comb generators”.

Tobias Kippenberg, born in 1976 in Berlin, studied physics first at the Technichal University Aachen. In 1999 he moved to Caltech (California Institute of Technology, Pasadena, USA), where he received his PhD in 2004. In 2005 he finished his research work at Caltech in the group of Kerry Vahala on the development of microresonators with ultralong photon lifetimes.

He came back to Germany to lead the independent Max Planck Research Group “Laboratory of Photonics and Quantum Measurements” in the Division of Prof. Hänsch. He carried out his habilitation in the area of optomechanics at the chair of Prof. Hänsch at the Ludwig-Maximilians-Universität Munich in 2009. In the same year Tobias Kippenberg was appointed as tenure track assistant professor at the Ecole Polytechnique Fédérale de Lausanne in Switzerland.

The research focus of Professor Kippenberg is on the area of optomechanics using microresonators and their applications in metrology. The “mini-frequency combs” based on monolithic microresonators which have been developed at MPQ can be used for optical frequency measurements and also for designing clocks of extremely high precision. For this development Tobias Kippenberg has already received the renowned Helmholtz Prize of the Physikalisch-Technische Bundesanstalt (PTB) in 2009, together with Dr. Ronald Holtzwarth and Pascal Del`Haye. In the same year Tobias Kippenberg was also awarded the Fresnel Prize for his fundamental contributions to optomechanics.

Contact:

Dr. habil. Tobias J. Kippenberg (PhD)
Ecole Polytechnique Federale de Lausanne (EPFL)
(Swiss Federal Institute of Technology Lausanne)
Associate Professor
Tel: + 41 21 69 34428 (CH) / +41795350016
Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching
olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Call for nominations of outstanding catalysis researchers for the Otto Roelen Medal 2018
20.06.2017 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>