Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dr. Tobias Nebel receives Otto Hahn Medal of the Max-Planck Society

18.05.2011
Dr. Tobias Nebel, a young research scientist at the Max Planck Institute of Quantum Optics in Garching (near Munich), has been awarded the Otto Hahn Medal 2010.

Since 1978 the Max Planck Society annually honours with this award up to 40 young scientists for their excellent research. It is supposed to encourage highly talented people to pursue a professional career at universities and institutes in the field of fundamental research. Dr. Nebel receives this award “for the first measurement of the Lamb shift in muonic hydrogen and the resulting redefinition of the radius of the proton”.

Tobias Nebel, born in 1976, studied physics at the University of Augsburg, at the University of British Columbia Vancouver (Canada) and at the Ludwig-Maximilians-Universität München, where he received his doctoral degree at the chair of Professor Theodor W. Hänsch in 2010. His thesis on the subject The Lamb Shift in Muonic Hydrogen was carried out at the Max Planck Institute of Quantum Optics in the Laser Spectroscopy Division and finished with “summa cum laude”.

The measurements on the muonic hydrogen atoms took place in collaboration with several research institutes at the Paul Scherrer Institute in Villigen, Switzerland. In these exotic atoms the outer electron is replaced by the 200times heavier muon, which gets much closer to the nucleus and literally “feels” its extension. The spectroscopic determination of the Lamb shift of the energy levels in muonic hydrogen in 2010 yielded a value for the proton radius which was significantly smaller than deduced from previous measurements – a fact that still puzzles the scientific community.

Tobias Nebel has already received the “Government of Canada Award” for Graduate Studies in Canada. Dr. Nebel will be presented with the Otto Hahn Medal on the occasion of the main assembly of the Max Planck Society in Berlin on June 8, 2011. Olivia Meyer-Streng

Contact:

Dr. Tobias Nebel
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 691
Fax: +49 - 89 / 32905 200
e-mail: tobias.nebel@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Hans-Kopfermannstraße 1
85748 Garching
Phone: +49 89 32905 213
e-mail: olivia.meyer-streng@mpg.mpq.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

Further reports about: Lamb Max Planck Institute Optic Quantum hydrogen atom

More articles from Awards Funding:

nachricht Radio astronomers score high marks in the competition for EU funding
12.01.2017 | Max-Planck-Institut für Radioastronomie

nachricht Europe wide cooperation on spinal cord injury research receives 1.34 Million Euros grant
12.12.2016 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>