Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer (r)evolutionises architecture

31.01.2012
GENTS MAKES AN IMPRESSION: AUSTRIAN BUILDING AWARD GOES TO STRUCTURAL DESIGN TOOL

For the first time, new types of complex load-bearing structures can now be both designed and calculated using a single computer programme. This has become possible thanks to the new software "GENTs", developed as part of a project sponsored by the Austrian Science Fund (FWF).

The software combines evolutionary optimisation methods and computer-based calculation tools for the first time to create an intuitive tool for architects and engineers. This combination enables the conception of light, flexible and resource-efficient load-bearing structures out of irregular shapes. The innovative potential of the new software also impressed the jury of the Austrian Building Award and it was voted winner of the "Research and Development" category.

Beam structures support architectural masterpieces. Whether Calatrava, Foster or Coop Himmelb(l)au - those who aim high in the world of architecture inevitably need to rely on these for roofs, bridges or towers. Up to now, however, architectural creativity in this area has been subject to certain limitations, as it was deemed the more regular the structure´s design, the more stable it would be. The software "GENTs" now overturns this idea, allowing irregular structures to be created which still provide a high level of stability and efficiency. This FWF project has thereby laid the foundation for a whole new range of design processes and solutions. This development achievement was officially acknowledged when the software was honoured with the 2011 Austrian Building Award.

DESIGN (R)EVOLUTION
Thanks to its innovative combination, the software "GENTs - Generic Exploration and Navigation Tool for Structures" enables a completely new approach to designing load-bearing structures. "This means we can now calculate irregular structures and come up with designs without being bound to particular support structure types or schemes. GENTs combines countless variations of individual structural elements which can in turn be mutated and recombined until the most effective solution is identified. The quantity of material included in the calculation is precisely sufficient to ensure stability, enabling the creation of particularly light structures," explains project leader Prof. Klaus Bollinger of the Institute of Architecture at the University of Applied Arts Vienna. The key parameters that the programme takes into account during its calculations are the shape, position and function of each element of the support structure.
INTELLIGENT USE OF FORCES
Until now, the design of beam structures only allowed for the channelling of forces applied by pressure and tensile load. This led to a conventional canon of various framework typologies which were all based on triangles as basic design units, which thereby all had a high degree of regularity in common. Thanks to GENTs, bending moments can now also be factored into the design process, together with pressure and tensile load. As a result, the design no longer starts out from a simplified systematisation, but can simulate the entire complex interaction of the individual beam elements, allowing an expansion of the design options previously limited to basic triangular units. How exactly this structural optimisation works was demonstrated in extensive series of tests with up to 2.5 million calculated structures. GENTs-generated support structures show the same load-bearing capacity and deformation as traditional ones, but are up to 15 percent lighter than their veteran "rivals".

The realisation of a design based on this optimisation can now be seen at the Airail Center Frankfurt. Here, a bridge is being built for a mini-metro based on a GENTs design, with the calculative possibilities for structural optimisation, allowing the creation of a dynamic appearance and function. The appearance of the irregular, sinuous design supports the movement of the train as it passes through the bridge. "This design process," says project collaborator DI Arne Hofmann, "would have been inconceivable without the automated calculation and analysis provided by GENTs."

All in all, the GENTs programme, developed within the framework of an FWF project, means closer collaboration between architects and structural planners. It is therefore hardly surprising that the project team headed by Prof. Bollinger, DI Hofmann and DIDr. Preisinger, recently won the Austrian Building Award for Research and Development. The prize money of EUR 10.000 might also be seen as recognition of the importance of investment in basic research, which in this case is contributing significantly to revolutionising building culture.

Scientific contact:
DI Arne Hofmann
University of Applied Arts Vienna
Oskar Kokoschka-Platz 2
1010 Vienna, Austria
T +43 / (0)1 / 955 54 54 14
E ahofmann@bollinger-grohmann-schneider.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations für
Forschung und Bildung
Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Katharina Schnell | PR&D
Further information:
http://www.fwf.ac.at

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>