Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carl Zeiss Foundation supports interdisciplinary research consortium "Chemical BioMedicine"

06.09.2012
Innovative research concept jointly initiated by the Mainz University Medical Center and the JGU Biology and Chemistry institutes receives funding of €1 million

The new interdisciplinary research consortium "Chemical BioMedicine" (ChemBioMed) seeks to extract new materials from natural sources, such as fungi and deep-sea sponges, which could help dissect disease mechanisms and prevent illnesses.

The Carl Zeiss Foundation is supporting the innovative research collaboration between the University Medical Center Mainz and the Biology and Chemistry institutes of Johannes Gutenberg University Mainz (JGU) with €1 million. This sponsorship is being provided as part of the foundation's program "Promotion of University Research Structures."

Today it is mainly chemicals that are used worldwide for the prevention and treatment of illnesses such as cancer, Alzheimer's disease, and inflammatory disorders. However, natural products extracted from fungi or marine sponges used as sources of potential new active substances have a decisive advantage over purely synthetically-produced products: Evolution has already pre-tested them in living organisms.

Consequently, the new ChemBioMed project aims to develop a seamless research pipeline, starting with the extraction and identification of bioactive natural products, the analysis of their structure and synthesis, followed by the exploitation of their structure-activity relationship for appropriate biomedical applications. "To meet this ambitious challenge, we depend on exceptional minds as well as sophisticated technologies. So, physicians, chemists, biologists, and bioinformatics specialists need to join forces in the research concept," explains one of the two coordinators of the consortium, Professor Dr. Roland Stauber of the Department of Otolaryngology, Head, and Neck Surgery – Plastic Surgery at the Mainz University Medical Center.

It is often difficult to use natural products because of their complex structure, representing a major challenge for their synthesis, and because of their limited availability. "However, with our ample experience in the chemistry of natural products adopted over the last years we are now well prepared to overcome such obstacles," the second coordinator of the consortium, Professor Dr. Till Opatz of the Institute of Organic Chemistry and Director of the Natural Product Synthesis Center at JGU, continues.

In addition, the Institute of Biotechnology and Drug Research (IBWF) and the robotic platform at the Mainz Screening Center are major pillars promoting the workflow of the project. "Clearly, the current support by the Carl Zeiss Foundation has helped us reach a critical milestone, paving our road towards excellent research," summarizes Roland Stauber looking towards the future.

The Institute of Biotechnology and Drug Research (IBWF), cooperation partner in the Center of Natural Materials Research Rhineland-Palatinate – Center of Excellence in Integrated Natural Materials Research, is currently based in Kaiserslautern, but will soon be relocated to Johannes Gutenberg University Mainz. Among other things, the IBWF undertakes interdisciplinary, applied research with the aim of developing new active substances from natural sources. "We bring with us specialist knowledge and experience in the area of drug and natural materials research and look forward to cooperating and networking with the faculties of Biology, Chemistry, and Medicine at Mainz University to tap the scientific and economic potential," says PD. Dr. Eckhard Thines, Director of the IBWF and, from October 2012, Professor of Biotechnology and Drug Research at the Faculty of Biology at Mainz University.

Mainz University thus represents an ideal location for the new ChemBioMed project. Extensive contacts and the proximity to leading pharmaceutical companies will further help to efficiently combine fundamental and applied clinically-relevant research. Hence, JGU sees enormous scientific and economic potential in this research area – especially facing the increasing need for novel and more effective "chemical tools."

"A research concept of strategic importance has been promoted thanks to the support of the Carl Zeiss Foundation. This is another important step in establishing the Mainz science hub as an internationally important center for molecular medicine," states the Chief Scientific Officer of the Mainz University Medical Center, Professor Dr. Dr. Reinhard Urban.

"I especially welcome the intention that not only researchers but also students will benefit from this prestigious support. Because this future-oriented research concept complements our degree programs in Biomedical Chemistry, Biomedicine, and Applied Bioinformatics, it gives our students the chance to participate in research projects and applications at an early stage," says Professor Dr. Mechthild Dreyer, Vice President for Learning and Teaching at JGU. "This supports our concept of research-driven teaching and thus the integration of outstanding research and teaching as a quality hallmark of our university."

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15672_ENG_HTML.php

More articles from Awards Funding:

nachricht 11 million Euros for research into magnetic field sensors for medical diagnostics
27.05.2016 | Christian-Albrechts-Universität zu Kiel

nachricht Laser-based Production Process for High Efficiency Solar Cells Wins Award
11.05.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>