Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carl Zeiss Foundation donates EUR 850,000 to research structure concept ELYSION at Mainz University

13.08.2015

Advanced Lab for Electrochemistry and Electroorganic Synthesis (ELYSION) enhances the strategic relevance of Mainz in the fields of electroconversion and electroactive materials

Over the next four years, the Carl Zeiss Foundation will be providing support in the form of EUR 850,000 to the Advanced Lab for Electrochemistry and Electroorganic Synthesis (ELYSION), a unique collaborative research concept based at the Institute of Organic Chemistry and the Institute of Inorganic Chemistry and Analytical Chemistry at Johannes Gutenberg University Mainz (JGU) in Germany.

The use of electricity as a catalyst in chemical reactions is one of the most sustainable methods of synthesizing materials and chemical compounds. The accompanying development of electrolytic conversion techniques and new types of electrodes will make it possible to overcome the existing frontiers of this future-oriented approach.

"ELYSION is a conceptional measure that is designed to shift the focus of our current activities in the field of polymer science onto electroconversion and electroactive materials," stated Professor Siegfried Waldvogel, acting director of the JGU Institute of Organic Chemistry.

"The establishment of this unique screening laboratory for electrosynthesis and the evaluation of new types of electrode materials for electrolytic conversions will help address a vital need with regard to electrosynthesis. Thanks to the availability of high-performance mass spectrometry equipment directly coupled to the electrosynthesis test cells, it will be possible to significantly accelerate the screening process of electrosynthetic techniques."

A central pool of equipment for electrosynthesis and the expertise by a key scientific consultant will be provided. This measure will simplify the implementation and analysis of electrochemical methods.

ELYSION combines the expertise of the Institute of Organic Chemistry and the Institute of Inorganic Chemistry and Analytical Chemistry at Johannes Gutenberg University Mainz as well as that of the Mainz-based Max Planck Institute for Polymer Research.

An independent committee of researchers and representatives of industry drawn from throughout Germany will help ensure the scientific quality of projects and the performance of the laboratory.

Weitere Informationen:

http://www.uni-mainz.de/presse/19525_ENG_HTML.php - press release

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>