Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Research Institute Announces Winner of 2009 Frederick Alt Award for New Discoveries in Immunology

08.10.2009
The Cancer Research Institute, Inc. (CRI), a nonprofit organization dedicated exclusively to the support and coordination of scientific and clinical efforts that will lead to the immunological treatment, control, and prevention of cancer, has announced that Anjana Rao, Ph.D., professor of pathology at the Harvard Medical School in Boston, MA, is the winner of the Cancer Research Institute 2009 Frederick W. Alt Award for New Discoveries in Immunology.

CRI presented the award to Dr. Rao during a special reception and dinner for CRI-funded graduate students and postdoctoral fellows held the evening of September 30 at The Harvard Club in New York City. The dinner took place in conjunction with the Institute’s 17th Annual International Cancer Immunotherapy Symposium, held Sept. 30-Oct. 2, 2009.

In her presentation of the award to Dr. Rao, Dr. Ellen Puré, professor of the Molecular and Cellular Oncogenesis Program at The Wistar Institute in Philadelphia, PA, and chair of the Cancer Research Institute Postdoctoral Fellowship Committee, lauded Dr. Rao’s seminal contributions to our understanding of the role of gene transcription factors in cellular differentiation and function, particularly in immune cells.

Dr. Rao’s research is focused on the molecular mechanisms of signal transduction and gene expression in T lymphocytes, important cells of the immune system that have proven critical to immune control of cancer. Dr. Rao’s early work identified the role of transcription factors in directing T-cell differentiation, especially different functional subsets of T cells.

She elucidated intracellular signal transduction pathways leading from store-operated calcium entry through what is known as CRAC (calcium-release activated calcium entry) channels to activation of the transcription factor known as NFAT (nuclear factor of activated T cells). She also identified the first member of the NFAT family as well as the CRAC channel pore subunit critical to this response.

Her work has defined how NFAT and other transcription factors regulate immune responses including the induction of peripheral immune tolerance and regulatory T-cell function, both of which directly affect the immune system’s ability to eliminate cancer by inhibiting the activity of other immune cells.

Her studies of the genetic and epigenetic regulation of T-cell differentiation have provided critical insights into DNA regulatory regions that are involved in this type of transcriptional regulation, and also in the nuclear processes that control chromatin assembly and expression of genes that direct lineage specification. In addition to having impact on the immune response, her work has broader implications for cell lineage differentiation and specification in general.

Dr. Rao completed her undergraduate and graduate studies in science at Osmania University in Hyderabad, India. In 1978, she received her Ph.D. in biophysics from Harvard University. In 1981, Dr. Rao received a Cancer Research Institute Postdoctoral Fellowship Award while she carried out her postdoctoral training in the lab of Dr. Harvey Cantor at the Dana Farber Cancer Institute. She joined the Harvard faculty in 1981 as an instructor in pathology, became an assistant professor in 1984, an associate professor in 1993, and in 1995 she was appointed as a senior investigator of what was then known as the Center for Blood Research, now known as the Immune Disease Institute, which is headed by Dr. Fred Alt, in whose honor this award is named.

In accepting the award, Dr. Rao expressed her gratitude for the Cancer Research Institute’s support of her work. “The CRI postdoctoral fellowship jumpstarted my career, as it has jumpstarted the careers of so many postdoctoral fellows and students,” she told the audience of current CRI fellows, graduate students, and other members of the CRI community including trustees, scientific advisors, and staff. “Getting such an award at the beginning of your career makes one feel independent—the idea is now that you can do whatever it is you want to do, to think of good ideas and do them.”

The Cancer Research Institute annually bestows thirty fellowship awards totaling approximately $4.4 million. Since the establishment of the CRI Postdoctoral Fellowship Program in 1971 (now called the Irvington Institute Fellowship Program of the Cancer Research Institute), CRI has supported 968 young research scientists, many of whom have since gone on to become leaders in the fields of immunology and tumor immunology.

About the Frederick W. Alt Award for New Discoveries in Immunology

The Frederick W. Alt Award for New Discoveries in Immunology is presented annually to a former postdoctoral fellow of the Cancer Research Institute in recognition of outstanding success in academia or industry for research that may have a potentially major impact on immunology. The award is named after Dr. Frederick W. Alt, co-chief of molecular medicine and the Charles A. Janeway Professor of Pediatrics at the Children’s Hospital in Boston, MA, and a Howard Hughes Medical Institute investigator and professor of genetics at the Harvard Medical School / Immune Disease Institute in Boston, MA, is a member of the Cancer Research Institute Scientific Advisory Council who also served for many years as chair of the Postdoctoral Fellowship Committee of the Irvington Institute for Immunological Research, an organization that merged with the Cancer Research Institute in 2007. For more than 30 years, Dr. Alt has studied how instability within the genome leads to cancer and has worked to uncover the cellular mechanisms that normally suppress this process. His discoveries have led to a greater understanding of the ways that cancer develops, and they hold promise for finding ways to control the disease.

About the Cancer Research Institute

The Cancer Research Institute (CRI) is the world’s only non-profit organization dedicated exclusively to the support and coordination of scientific and clinical efforts that will lead to the immunological treatment, control, and prevention of cancer. Guided by a world-renowned Scientific Advisory Council that includes four Nobel Prize winners and twenty-nine members of the National Academy of Sciences, CRI supports leading-edge cancer research at top medical centers and universities throughout the world. CRI is an initiator and steward of global collaborative research efforts aimed at accelerating the translation of basic discovery into effective cancer vaccines and other immune-based therapies to provide new hope to cancer patients.

The Cancer Research Institute has one of the lowest overhead expense ratios among non-profit organizations, with more than 85 percent of its resources going directly to the support of its science, medical, and research programs. CRI meets or exceeds all 20 standards of the Better Business Bureau Wise Giving Alliance, the most comprehensive U.S. charity evaluation service, and according to Charity Navigator exceeds or meets industry standards and performs as well as or better than most cancer charities. CRI has also received an 'A' grade for fiscal disclosure and efficiency from the American Institute of Philanthropy as well as top accolades from other charity watchdog organizations.

Brian Brewer | Newswise Science News
Further information:
http://www.cancerresearch.org

More articles from Awards Funding:

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>