Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brupbacher Prize goes to B. Vogelstein & J. Hoeijmakers for research on colorectal and skin cancer

17.02.2011
Today, the Charles Rodolphe Brupbacher Prize for Cancer Research 2011 goes to two researchers who have contributed to better understanding of the genetics underlying the growth of tumors.

Oncologist Bert Vogelstein has demonstrated how sequential accumulation of mutations leads to colorectal cancer, and Jan H. Hoeijmakers has conducted breakthrough research in xeroderma, a hereditary disease causing skin cancer.

For the tenth time, the Charles Rodolphe Brupbacher Prize will be awarded in conjunction with an international symposium. The prize of 100,000 Swiss francs for each scientist, is one of the world’s most prestigious honors in cancer research. The prize is awarded every two years to investigators who have made outstanding contributions to oncology. The symposium will also honor five junior researchers who will receive a Young Investigator Award.

This year's Brupbacher Prize goes to Prof. Bert Vogelstein of the John Hopkins University in Baltimore (USA) and to Prof. Jan. H. Hoeijmakers of Erasmus University, Rotterdam (Netherlands). The findings of both researchers have contributed greatly to the understanding of the genetic basis of tumor growth. Bert Vogelstein's main area of research is colorectal cancer, Jan Hoeijmakers' is skin cancer. The particular significance of their findings lies in their general relevance: Cancer of the colon and rectum is closely linked to lifestyle of Western populations and is the second-leading cause of cancer-related deaths in Europe. Hoeijmakers’ findings do not only shed light on skin tumors, but also on premature aging.

Bert Vogelstein

Bert Vogelstein ranks among the most-quoted scientists in the field of biomedicine. He is best-known for his groundbreaking work on the genesis of cancer of the colon. Tumors in the large intestine (colon) lend themselves particularly well to analysis because their progression from a benign growth to a malignant tumor can be clinically observed by means of colonoscopies.

Vogelstein has observed that initial, small accumulations of atypical cells are caused by a mutation of the APC gene, a tumor-suppressor gene that controls cell division. The mutation of the APC gene is also responsible for inherited familial adenomatous polyposis, a disease characterized by a great number of polyps in the intestinal wall. If not removed, these polyps can develop into colon cancer.

Additional mutations activate genes coding for growth factors (oncogenes).as well as in other tumor suppressor genes. All of these DNA mutations mediate a slow but steady growth from initially small, then larger benign polyps that then progress into a carcinoma. Although it takes an average of 17 years for a small polyp to develop into a carcinoma, the process then accelerates, leading typically within two more years to a highly malignant carcinoma that metastasizes to regional lymph nodes and distant organs.

Vogelstein's findings on the sequential accumulation of mutations and tumor growth have received wide-spread recognition and provide the basis for prevention, early diagnosis and treatment of colorectal cancer. Vogelstein has recently begun analyzing entire cancer genomes, i.e. the sum of all genes in a cell. Understanding the genetic make-up of a tumor provides the basis for personalized tumor therapy, a major goal in clinical oncology.

Jan H. Hoeijmakers

Jan Hoeijmakers has made an outstanding contribution by elucidating the molecular basis of hereditary diseases caused by defective DNA repair. There are multiple pathways for the repair of damaged DNA. If left unrepaired, this increases the risk of several diseases, including cancer. Dr. Hoeijmakers has performed innovative research on xeroderma pigmentosum, a hereditary skin disease that is characterized by extreme sensitivity to UV rays and the development of multiple, often malignant tumors in skin regions exposed to sunlight. Ultraviolet rays cause damage involving chemical links between coding DNA bases, particularly thymine. During cell division and in the absence of efficient repair, this leads to permanent mutations in daughter cells. Patients affected by xeroderma pigmentosum demonstrate a reduced DNA repair capacity.

Hoeijmakers identified and characterized multiple genes involved in the repair process. He was able to show that certain forms of limited DNA repair capacity can bring about the exact opposite of a tumor, namely premature aging.

A complex DNA repair system ensures the stability of our genome. Jan Hoeijmakers has earned international recognition for having identified key aspects of the molecular basis of DNA repair and the role it plays in both, the development of tumors and in premature aging.

The foundation:
The Charles Rodolphe Brupbacher Foundation was founded in 1991 by Mme. Frédérique Brupbacher in memory of her husband, Charles Rodolphe Brupbacher. The foundation is affiliated with the Faculty of Medicine of the University of Zurich. More information on the foundation is available at www.brupbacher-stiftung.ch
Contact information:
Prof. Paul Kleihues
C.R. Brupbacher Stiftung
c/o Dean's Office, Faculty of Medicine
University of Zurich
Phone: +41 79 738 34 72
E-Mail: brupbacher-stiftung@dekmed.uzh.ch

Beat Müller | idw
Further information:
http://www.mediadesk.uzh.ch/articles/2011/brupbacher-preis-2011_en.html
http://www.mediadesk.uzh.ch/articles/2011/brupbacher-preis-2011.html

More articles from Awards Funding:

nachricht Tracking down pest control strategies
31.01.2018 | Technische Universität Dresden

nachricht Polymers and Fuels from Renewable Resources
29.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

21.02.2018 | Health and Medicine

First line of defence against influenza further decoded

21.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>