Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brupbacher Prize goes to B. Vogelstein & J. Hoeijmakers for research on colorectal and skin cancer

17.02.2011
Today, the Charles Rodolphe Brupbacher Prize for Cancer Research 2011 goes to two researchers who have contributed to better understanding of the genetics underlying the growth of tumors.

Oncologist Bert Vogelstein has demonstrated how sequential accumulation of mutations leads to colorectal cancer, and Jan H. Hoeijmakers has conducted breakthrough research in xeroderma, a hereditary disease causing skin cancer.

For the tenth time, the Charles Rodolphe Brupbacher Prize will be awarded in conjunction with an international symposium. The prize of 100,000 Swiss francs for each scientist, is one of the world’s most prestigious honors in cancer research. The prize is awarded every two years to investigators who have made outstanding contributions to oncology. The symposium will also honor five junior researchers who will receive a Young Investigator Award.

This year's Brupbacher Prize goes to Prof. Bert Vogelstein of the John Hopkins University in Baltimore (USA) and to Prof. Jan. H. Hoeijmakers of Erasmus University, Rotterdam (Netherlands). The findings of both researchers have contributed greatly to the understanding of the genetic basis of tumor growth. Bert Vogelstein's main area of research is colorectal cancer, Jan Hoeijmakers' is skin cancer. The particular significance of their findings lies in their general relevance: Cancer of the colon and rectum is closely linked to lifestyle of Western populations and is the second-leading cause of cancer-related deaths in Europe. Hoeijmakers’ findings do not only shed light on skin tumors, but also on premature aging.

Bert Vogelstein

Bert Vogelstein ranks among the most-quoted scientists in the field of biomedicine. He is best-known for his groundbreaking work on the genesis of cancer of the colon. Tumors in the large intestine (colon) lend themselves particularly well to analysis because their progression from a benign growth to a malignant tumor can be clinically observed by means of colonoscopies.

Vogelstein has observed that initial, small accumulations of atypical cells are caused by a mutation of the APC gene, a tumor-suppressor gene that controls cell division. The mutation of the APC gene is also responsible for inherited familial adenomatous polyposis, a disease characterized by a great number of polyps in the intestinal wall. If not removed, these polyps can develop into colon cancer.

Additional mutations activate genes coding for growth factors (oncogenes).as well as in other tumor suppressor genes. All of these DNA mutations mediate a slow but steady growth from initially small, then larger benign polyps that then progress into a carcinoma. Although it takes an average of 17 years for a small polyp to develop into a carcinoma, the process then accelerates, leading typically within two more years to a highly malignant carcinoma that metastasizes to regional lymph nodes and distant organs.

Vogelstein's findings on the sequential accumulation of mutations and tumor growth have received wide-spread recognition and provide the basis for prevention, early diagnosis and treatment of colorectal cancer. Vogelstein has recently begun analyzing entire cancer genomes, i.e. the sum of all genes in a cell. Understanding the genetic make-up of a tumor provides the basis for personalized tumor therapy, a major goal in clinical oncology.

Jan H. Hoeijmakers

Jan Hoeijmakers has made an outstanding contribution by elucidating the molecular basis of hereditary diseases caused by defective DNA repair. There are multiple pathways for the repair of damaged DNA. If left unrepaired, this increases the risk of several diseases, including cancer. Dr. Hoeijmakers has performed innovative research on xeroderma pigmentosum, a hereditary skin disease that is characterized by extreme sensitivity to UV rays and the development of multiple, often malignant tumors in skin regions exposed to sunlight. Ultraviolet rays cause damage involving chemical links between coding DNA bases, particularly thymine. During cell division and in the absence of efficient repair, this leads to permanent mutations in daughter cells. Patients affected by xeroderma pigmentosum demonstrate a reduced DNA repair capacity.

Hoeijmakers identified and characterized multiple genes involved in the repair process. He was able to show that certain forms of limited DNA repair capacity can bring about the exact opposite of a tumor, namely premature aging.

A complex DNA repair system ensures the stability of our genome. Jan Hoeijmakers has earned international recognition for having identified key aspects of the molecular basis of DNA repair and the role it plays in both, the development of tumors and in premature aging.

The foundation:
The Charles Rodolphe Brupbacher Foundation was founded in 1991 by Mme. Frédérique Brupbacher in memory of her husband, Charles Rodolphe Brupbacher. The foundation is affiliated with the Faculty of Medicine of the University of Zurich. More information on the foundation is available at www.brupbacher-stiftung.ch
Contact information:
Prof. Paul Kleihues
C.R. Brupbacher Stiftung
c/o Dean's Office, Faculty of Medicine
University of Zurich
Phone: +41 79 738 34 72
E-Mail: brupbacher-stiftung@dekmed.uzh.ch

Beat Müller | idw
Further information:
http://www.mediadesk.uzh.ch/articles/2011/brupbacher-preis-2011_en.html
http://www.mediadesk.uzh.ch/articles/2011/brupbacher-preis-2011.html

More articles from Awards Funding:

nachricht Scientist at Kiel University receive EU funding to develop new implantats
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>