Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Biology of Emotions

17.09.2012
Neurobiologist Wulf Haubensak, Group Leader at the Research Institute of Molecular Pathology (IMP) in Vienna, has been awarded one of the prestigious Starting Grants by the European Research Council ERC. The grant is worth 1.5 Million Euros and will support an ambitious project to explore the neural basis of emotions.
Emotions tag our experiences and act as signposts to steer our behavior. Avoiding danger and pursuing rewards is essential for successful navigation through a complex environment, and thus for survival. The search for the neural correlate of emotions has fascinated not only scientists – after all, emotions are a central part of our mental self.

A team of researchers, led by Wulf Haubensak at the IMP, has set out to understand how emotions are generated in the brain. Just like seeing or hearing, our feelings are based on the activity of nerve cells or neurons. Emotions are characterized by the activity of multiple areas of the brain: the neocortex, brain stem and an almond-shaped region in the limbic system called amygdala. Together, these components form a complex network of neuronal circuits whose detailed structure and function are not yet understood.
Cartography of the Brain

The generous ERC funds will support an IMP-project to map the emotional circuitry within this network and to study how activity in these circuits gives rise to emotions. In their experimental setups, the researchers will use mice as experimental model system. Mice are able to show basic emotional behaviors and have a brain-anatomy sufficiently similar to ours, which allows us to draw conclusions that might be relevant for humans as well.
To address the origin of emotions, the neuroscientists use a combination of advanced methods that have been developed in recent years. To visualize neuronal circuit elements, they take advantage of the characteristics of certain viruses, such as the rabies pathogen. These viruses infect specific nerve cells and migrate along them to the brain. A fluorescent protein, engineered into the virus in advance, leaves a visible trace of light. This “viral circuit mapping” is able to highlight networks of interacting neurons with cartographic precision.

For a functional analysis of the tagged circuits, the scientists then employ sophisticated optogenetic technology. These methods make it possible to selectively switch groups of neurons on or off, using visible light like a remote control.
Circuit Therapies for the Future

The IMP-project will also address the question of how genes and pharmaceutical substances affect the activity of neuronal circuits and influence emotions. The researchers hope to gain valuable insights into emotional dysfunctions such as post-traumatic stress or anxiety disorders. Ultimately, this could lead to the development of specific “circuit therapies” to treat psychiatric disorders more selectively and with less side effects.
Wulf Haubensak is delighted by the ERC’s decision to support his project: “The generous funding will allow us to broaden our studies and to develop new experimental approaches. It also reflects the appreciation of the scientific community for our ideas and will certainly help to attract young, enthusiastic scientists to our project.”

The ERC Starting Grants aim to support up-and-coming research leaders who are about to establish a proper research team and to start carrying out independent research in Europe. The scheme targets promising young scientists who have the proven potential of conducting excellent research. In the current call, nine researchers from institutions based in Austria were selected to receive a Starting Grant, out of 91 applications.

About Wulf Haubensak

Wulf Haubensak was born in Tübingen (Germany) in 1972. He studied Biochemistry at the University of Bochum and in 2003 received his PhD in Neurosciences from the University of Heidelberg. He went on to join David Anderson’s lab at the California Institute of Technology as a Postdoc. Since 2011, Wulf Haubensak is a Group Leader at the Research Institute of Molecular Pathology in Vienna.

About the IMP

The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology. The IMP is a founding member of the Campus Vienna Biocenter.

Contact
Dr. Heidemarie Hurtl
IMP Communications
Tel.: (+43 1) 79730 3625
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>