Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Biology of Emotions

17.09.2012
Neurobiologist Wulf Haubensak, Group Leader at the Research Institute of Molecular Pathology (IMP) in Vienna, has been awarded one of the prestigious Starting Grants by the European Research Council ERC. The grant is worth 1.5 Million Euros and will support an ambitious project to explore the neural basis of emotions.
Emotions tag our experiences and act as signposts to steer our behavior. Avoiding danger and pursuing rewards is essential for successful navigation through a complex environment, and thus for survival. The search for the neural correlate of emotions has fascinated not only scientists – after all, emotions are a central part of our mental self.

A team of researchers, led by Wulf Haubensak at the IMP, has set out to understand how emotions are generated in the brain. Just like seeing or hearing, our feelings are based on the activity of nerve cells or neurons. Emotions are characterized by the activity of multiple areas of the brain: the neocortex, brain stem and an almond-shaped region in the limbic system called amygdala. Together, these components form a complex network of neuronal circuits whose detailed structure and function are not yet understood.
Cartography of the Brain

The generous ERC funds will support an IMP-project to map the emotional circuitry within this network and to study how activity in these circuits gives rise to emotions. In their experimental setups, the researchers will use mice as experimental model system. Mice are able to show basic emotional behaviors and have a brain-anatomy sufficiently similar to ours, which allows us to draw conclusions that might be relevant for humans as well.
To address the origin of emotions, the neuroscientists use a combination of advanced methods that have been developed in recent years. To visualize neuronal circuit elements, they take advantage of the characteristics of certain viruses, such as the rabies pathogen. These viruses infect specific nerve cells and migrate along them to the brain. A fluorescent protein, engineered into the virus in advance, leaves a visible trace of light. This “viral circuit mapping” is able to highlight networks of interacting neurons with cartographic precision.

For a functional analysis of the tagged circuits, the scientists then employ sophisticated optogenetic technology. These methods make it possible to selectively switch groups of neurons on or off, using visible light like a remote control.
Circuit Therapies for the Future

The IMP-project will also address the question of how genes and pharmaceutical substances affect the activity of neuronal circuits and influence emotions. The researchers hope to gain valuable insights into emotional dysfunctions such as post-traumatic stress or anxiety disorders. Ultimately, this could lead to the development of specific “circuit therapies” to treat psychiatric disorders more selectively and with less side effects.
Wulf Haubensak is delighted by the ERC’s decision to support his project: “The generous funding will allow us to broaden our studies and to develop new experimental approaches. It also reflects the appreciation of the scientific community for our ideas and will certainly help to attract young, enthusiastic scientists to our project.”

The ERC Starting Grants aim to support up-and-coming research leaders who are about to establish a proper research team and to start carrying out independent research in Europe. The scheme targets promising young scientists who have the proven potential of conducting excellent research. In the current call, nine researchers from institutions based in Austria were selected to receive a Starting Grant, out of 91 applications.

About Wulf Haubensak

Wulf Haubensak was born in Tübingen (Germany) in 1972. He studied Biochemistry at the University of Bochum and in 2003 received his PhD in Neurosciences from the University of Heidelberg. He went on to join David Anderson’s lab at the California Institute of Technology as a Postdoc. Since 2011, Wulf Haubensak is a Group Leader at the Research Institute of Molecular Pathology in Vienna.

About the IMP

The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology. The IMP is a founding member of the Campus Vienna Biocenter.

Contact
Dr. Heidemarie Hurtl
IMP Communications
Tel.: (+43 1) 79730 3625
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at

More articles from Awards Funding:

nachricht 11 million Euros for research into magnetic field sensors for medical diagnostics
27.05.2016 | Christian-Albrechts-Universität zu Kiel

nachricht Laser-based Production Process for High Efficiency Solar Cells Wins Award
11.05.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>