Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bessel Research Award of the AvH Foundation for visiting scientist at University of Kaiserslautern

27.01.2014
The theoretical physicist David Petrosyan from the Greek research center FORTH has received the Friedrich Wilhelm Bessel Research Award, a prestigious award for young scientists.

The theoretical physicist David Petrosyan from the Research center FORTH in Heraklion (Greece) has received the Friedrich Wilhelm Bessel Research Award of the Alexander von Humboldt Foundation. He is being honored for his research achievements in the field of theoretical quantum optics.

The awardee holds a doctorate from the Armenian Academy of Sciences (1999), and after stays at the Max Planck Institute for Quantum Optics in Garching and at the Weizmann Institute of Science, he works since 2002 at the prestigious Foundation for Research and Technology – Hellas.

The Friedrich Wilhelm Bessel Research Award is given annually by the German Alexander von Humboldt Foundation to promising researchers from abroad. This award honors outstanding young scientists who have already obtained international recognition in their field. Nominations are made by scientists in Germany, in this case by Professor Dr. Michael Fleischhauer (Department of Physics and State Research Center OPTIMAS at TU Kaiserslautern).

Dr. Petrosyan is an internationally recognized expert in theoretical quantum optics and quantum information. His research interests range from non-linear quantum optics of coherently driven atomic systems, to photonic crystals and many-body physics in ultra-cold quantum gases. He has provided significant contributions to the many-body theory of interacting Rydberg gases, their interaction with light and potential applications for photon-based quantum information processing. He is co-author of the excellent quantum optics textbook "Fundamentals of Quantum Optics and Quantum Information” published by Springer.The physicist is a former stipend holder of the German Academic Exchange Service (DAAD) and the Alexander von Humboldt Foundation. Last year he was a visiting professor at Aarhus University in Denmark.

The Bessel Award, which is endowed with 45,000 Euro, provides the opportunity to carry out self-chosen research projects in cooperation with specialist colleagues in Germany. For his research project, Dr. Petrosyan has chosen Professor Fleischhauer as his host, with whom he was already a visiting scientist in 2006 and 2011. Ten publications have until now emerged from their joint research efforts, two of them in the prestigious journal Physical Review Letters. "Through the Bessel Award I can intensify my long-lasting cooperation with Michael Fleischhauer and his group. We already have a lot of new research ideas on optically driven Rydberg gases that we can now explore together", says David Petrosyan. He looks forward to his stays at the Department of Physics of the University of Kaiserslautern in the coming years.

The official ceremony of the Friedrich Wilhelm Bessel Research Award will take place in March at the annual Symposium for Research Award Winners of the Alexander von Humboldt Foundation in Bamberg. Overall, the Foundation awards up to 25 Bessel awards annually.

Further information:
Prof. Dr. Michael Fleischhauer
Tel.: +49 631 205 3206, E-Mail: mfleisch(at)physik.uni-kl.de

Thomas Jung | TU Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>