Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award for research on molecular spintronics

12.07.2012
Wolfgang Wernsdorfer of the Institut Néel – CNRS Grenoble receives the €10,000 Gutenberg Lecture Award from the Graduate School Materials Science in Mainz (MAINZ)

The materials scientist Dr. Wolfgang Wernsdorfer has received the 2012 Gutenberg Lecture Award worth €10,000. The award is given annually by the Graduate School Materials Science in Mainz (MAINZ) for special achievements in materials science.

This year, the Graduate School has chosen to honor Dr. Wolfgang Wernsdorfer, a physicist working in the field of molecular spintronics. "Dr. Wolfgang Wernsdorfer is one of the pioneers in the fields of single-molecule magnets and nanoparticle magnetism. He is taking highly innovative and promising pathways that will lead to the development of the microelectronics of the future," says Professor Dr. Mathias Kläui, who together with Professor Dr. Claudia Felser heads the MAINZ Graduate School at Johannes Gutenberg University Mainz (JGU).

The field of molecular spintronics involves the investigation of methods that can be used to manipulate the spin and charge in molecular structures on the nanoscale. Wernsdorfer's research group at the Institut Néel of CNRS Grenoble was among the first to discover and develop the molecular structures in which a quantum spin state can be measured and subsequently controlled.

Molecules were once generally considered to be non-magnetic, but Wernsdorfer and others have shown that this is not the case. Molecules can actually carry a significant magnetic moment and also exhibit a stable orientation similar to conventional magnets. These have come to be called 'single-molecule magnets,' and a single molecule made from only a few atoms can be seen as the smallest possible unit in which data can be stored in a structure. And this makes them particularly interesting not just in terms of potential applications: They not only have the classical properties of magnets, but have also been shown to exhibit quantum characteristics that are important when it comes to taking on new challenges, such as developing molecular data storage and quantum computers.

In addition to conducting measurements, Wernsdorfer's group in Grenoble also creates and develops new techniques, such as the nano-SQUID, which is sensitive enough to detect signals generated by only a few molecules. The research activities are undertaken in close interdisciplinary cooperation with synthetic chemists, solid-state physicists, and electrical engineers.

"From a scientific perspective, the work done by Wolfgang Wernsdorfer is extraordinarily relevant to MAINZ, since many of the related fields are being investigated at our facilities in Mainz and Kaiserslautern," explains Kläui. "Molecular spintronics represents the ideal combination of hard and soft materials and thus builds bridges between the various fields of research at the MAINZ Graduate School." Wernsdorfer has over 450 publications to his credit and has been awarded an ERC Advanced Grant, the Wohlfarth Lecture Prize, and the Agilent Europhysics Prize for his innovative work.

The Gutenberg Lecture Award represents a step towards closer cooperation. Wernsdorfer has already published with chemists and physicists from Johannes Gutenberg University Mainz, and this collaboration is to be stepped up in the future, particularly with regard to interdisciplinary projects that involve combination of organic materials and functional carbon allotropes with correlated spin systems. These hybrid structures made from soft and hard condensed materials exhibit innovative functions that in the long run could prove to be useful for memory, logic, and sensor systems.

Funding for the MAINZ Graduate School of Excellence was initially approved in the 2007 German Excellence Initiative. Recently, MAINZ proved successful with its renewal proposal in the second phase of the Excellence Initiative and was thus awarded funding for the next five years. This federal funding provides great recognition of the work undertaken by materials scientists in Mainz and of the support for young researchers at JGU. MAINZ combines work groups from Johannes Gutenberg University Mainz, the University of Kaiserslautern, and the Max Planck Institute for Polymer Research. The MAINZ Graduate School provides excellent education in the field of materials science to top-notch German and international doctoral candidates working in the natural sciences.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15522.php
http://www.mainz.uni-mainz.de/

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>