Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award for research on molecular spintronics

12.07.2012
Wolfgang Wernsdorfer of the Institut Néel – CNRS Grenoble receives the €10,000 Gutenberg Lecture Award from the Graduate School Materials Science in Mainz (MAINZ)

The materials scientist Dr. Wolfgang Wernsdorfer has received the 2012 Gutenberg Lecture Award worth €10,000. The award is given annually by the Graduate School Materials Science in Mainz (MAINZ) for special achievements in materials science.

This year, the Graduate School has chosen to honor Dr. Wolfgang Wernsdorfer, a physicist working in the field of molecular spintronics. "Dr. Wolfgang Wernsdorfer is one of the pioneers in the fields of single-molecule magnets and nanoparticle magnetism. He is taking highly innovative and promising pathways that will lead to the development of the microelectronics of the future," says Professor Dr. Mathias Kläui, who together with Professor Dr. Claudia Felser heads the MAINZ Graduate School at Johannes Gutenberg University Mainz (JGU).

The field of molecular spintronics involves the investigation of methods that can be used to manipulate the spin and charge in molecular structures on the nanoscale. Wernsdorfer's research group at the Institut Néel of CNRS Grenoble was among the first to discover and develop the molecular structures in which a quantum spin state can be measured and subsequently controlled.

Molecules were once generally considered to be non-magnetic, but Wernsdorfer and others have shown that this is not the case. Molecules can actually carry a significant magnetic moment and also exhibit a stable orientation similar to conventional magnets. These have come to be called 'single-molecule magnets,' and a single molecule made from only a few atoms can be seen as the smallest possible unit in which data can be stored in a structure. And this makes them particularly interesting not just in terms of potential applications: They not only have the classical properties of magnets, but have also been shown to exhibit quantum characteristics that are important when it comes to taking on new challenges, such as developing molecular data storage and quantum computers.

In addition to conducting measurements, Wernsdorfer's group in Grenoble also creates and develops new techniques, such as the nano-SQUID, which is sensitive enough to detect signals generated by only a few molecules. The research activities are undertaken in close interdisciplinary cooperation with synthetic chemists, solid-state physicists, and electrical engineers.

"From a scientific perspective, the work done by Wolfgang Wernsdorfer is extraordinarily relevant to MAINZ, since many of the related fields are being investigated at our facilities in Mainz and Kaiserslautern," explains Kläui. "Molecular spintronics represents the ideal combination of hard and soft materials and thus builds bridges between the various fields of research at the MAINZ Graduate School." Wernsdorfer has over 450 publications to his credit and has been awarded an ERC Advanced Grant, the Wohlfarth Lecture Prize, and the Agilent Europhysics Prize for his innovative work.

The Gutenberg Lecture Award represents a step towards closer cooperation. Wernsdorfer has already published with chemists and physicists from Johannes Gutenberg University Mainz, and this collaboration is to be stepped up in the future, particularly with regard to interdisciplinary projects that involve combination of organic materials and functional carbon allotropes with correlated spin systems. These hybrid structures made from soft and hard condensed materials exhibit innovative functions that in the long run could prove to be useful for memory, logic, and sensor systems.

Funding for the MAINZ Graduate School of Excellence was initially approved in the 2007 German Excellence Initiative. Recently, MAINZ proved successful with its renewal proposal in the second phase of the Excellence Initiative and was thus awarded funding for the next five years. This federal funding provides great recognition of the work undertaken by materials scientists in Mainz and of the support for young researchers at JGU. MAINZ combines work groups from Johannes Gutenberg University Mainz, the University of Kaiserslautern, and the Max Planck Institute for Polymer Research. The MAINZ Graduate School provides excellent education in the field of materials science to top-notch German and international doctoral candidates working in the natural sciences.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15522.php
http://www.mainz.uni-mainz.de/

More articles from Awards Funding:

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>