Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award for research on molecular spintronics

12.07.2012
Wolfgang Wernsdorfer of the Institut Néel – CNRS Grenoble receives the €10,000 Gutenberg Lecture Award from the Graduate School Materials Science in Mainz (MAINZ)

The materials scientist Dr. Wolfgang Wernsdorfer has received the 2012 Gutenberg Lecture Award worth €10,000. The award is given annually by the Graduate School Materials Science in Mainz (MAINZ) for special achievements in materials science.

This year, the Graduate School has chosen to honor Dr. Wolfgang Wernsdorfer, a physicist working in the field of molecular spintronics. "Dr. Wolfgang Wernsdorfer is one of the pioneers in the fields of single-molecule magnets and nanoparticle magnetism. He is taking highly innovative and promising pathways that will lead to the development of the microelectronics of the future," says Professor Dr. Mathias Kläui, who together with Professor Dr. Claudia Felser heads the MAINZ Graduate School at Johannes Gutenberg University Mainz (JGU).

The field of molecular spintronics involves the investigation of methods that can be used to manipulate the spin and charge in molecular structures on the nanoscale. Wernsdorfer's research group at the Institut Néel of CNRS Grenoble was among the first to discover and develop the molecular structures in which a quantum spin state can be measured and subsequently controlled.

Molecules were once generally considered to be non-magnetic, but Wernsdorfer and others have shown that this is not the case. Molecules can actually carry a significant magnetic moment and also exhibit a stable orientation similar to conventional magnets. These have come to be called 'single-molecule magnets,' and a single molecule made from only a few atoms can be seen as the smallest possible unit in which data can be stored in a structure. And this makes them particularly interesting not just in terms of potential applications: They not only have the classical properties of magnets, but have also been shown to exhibit quantum characteristics that are important when it comes to taking on new challenges, such as developing molecular data storage and quantum computers.

In addition to conducting measurements, Wernsdorfer's group in Grenoble also creates and develops new techniques, such as the nano-SQUID, which is sensitive enough to detect signals generated by only a few molecules. The research activities are undertaken in close interdisciplinary cooperation with synthetic chemists, solid-state physicists, and electrical engineers.

"From a scientific perspective, the work done by Wolfgang Wernsdorfer is extraordinarily relevant to MAINZ, since many of the related fields are being investigated at our facilities in Mainz and Kaiserslautern," explains Kläui. "Molecular spintronics represents the ideal combination of hard and soft materials and thus builds bridges between the various fields of research at the MAINZ Graduate School." Wernsdorfer has over 450 publications to his credit and has been awarded an ERC Advanced Grant, the Wohlfarth Lecture Prize, and the Agilent Europhysics Prize for his innovative work.

The Gutenberg Lecture Award represents a step towards closer cooperation. Wernsdorfer has already published with chemists and physicists from Johannes Gutenberg University Mainz, and this collaboration is to be stepped up in the future, particularly with regard to interdisciplinary projects that involve combination of organic materials and functional carbon allotropes with correlated spin systems. These hybrid structures made from soft and hard condensed materials exhibit innovative functions that in the long run could prove to be useful for memory, logic, and sensor systems.

Funding for the MAINZ Graduate School of Excellence was initially approved in the 2007 German Excellence Initiative. Recently, MAINZ proved successful with its renewal proposal in the second phase of the Excellence Initiative and was thus awarded funding for the next five years. This federal funding provides great recognition of the work undertaken by materials scientists in Mainz and of the support for young researchers at JGU. MAINZ combines work groups from Johannes Gutenberg University Mainz, the University of Kaiserslautern, and the Max Planck Institute for Polymer Research. The MAINZ Graduate School provides excellent education in the field of materials science to top-notch German and international doctoral candidates working in the natural sciences.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15522.php
http://www.mainz.uni-mainz.de/

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>