Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award for a brilliant copper trick

16.06.2010
Polish-American polymer scientist Krzysztof Matyjaszewski receives the €10,000 Gutenberg Lecture Award of the Graduate School of Materials Science in Mainz (MAINZ)

The 2010 Gutenberg Lecture Award was today bestowed upon the Polish-American scientist Professor Dr Krzysztof Matyjaszewski for his ground-breaking developments in polymer production and processing. Matyjaszewski is one of the world’s most highly regarded chemists. He both teaches and pursues research at the Carnegie Mellon University in Pittsburgh, USA.

The Gutenberg Lecture Award, worth a total of € 10,000, has been conferred on Matyjaszewski primarily because of his development of a new process for the synthesis of polymers, allowing synthetic materials to be tailor-made for specific uses. Matyjaszewski was able to control a large number of hitherto uncontrolled polymerizations by using copper catalyst systems. The resultant materials have a vast range of applications - as surface finishes and adhesives, in printing dyes and cosmetics, and they are even employed in the fields of medicine and pharmacy, being used, for example, as coatings for stents. "Professor Matyjaszewski's process has not only revolutionized polymer synthesis but has had considerable influence on other fields of research. One consequence is that he has become one of the most frequently cited chemists," explains Professor Claudia Felser, Director of the Graduate School of Excellence MAINZ - Materials Science in Mainz, which awards the prize annually.

Krzysztof Matyjaszewski immigrated to the USA in 1985 where he developed his "Atom Transfer Radical Polymerization" process (ATRP) in the early 1990s contemporaneously with the parallel breakthroughs made by the Japanese researcher Mitsuo Sawamoto. The ATRP process is a method of controlled radical polymerization which by means of mostly copper-based reagents allows a high level of control in the assembly of single components. Thus, the build-up of the resulting synthetic molecules can be accurately fine-tuned. Using ATRP, polymers can be constructed that are superior to those that have been available to date in terms of properties, potential range of applications and capabilities. It has now even become possible to create surfaces with an antibacterial potential and these play an important role in certain areas, such as medicine (prosthetics) and the packaging industry. Today hundreds of chemists worldwide work with the Matyjaszewski’s method. His work and discoveries have not only stimulated further academic research, but have also opened up new horizons for the industry.

Krzysztof Matyjaszewski obtained a degree in chemistry at the Technical University of Moscow in 1972 and was awarded his PhD by the Polish Academy of Sciences in 1976. He has been based at Carnegie Mellon University in Pittsburgh, USA, since 1985, where he now heads the Center for Macromolecular Engineering. His consortium is responsible for over 600 publications listed in the Web of Science and there are more than 34,000 entries for these in the citation index. His body of publications currently makes him one of the three most frequently cited polymer chemists in the world. There are also nearly 80 patents that bear his name. Matyjaszewski holds honorary doctorates conferred by universities in France, Russia, Poland, Greece, and Belgium, and he is a member of the Polish Academy of Sciences. He received the Foundation of Polish Science Award, Poland's most prestigious science award, in 2004, and the Presidential Green Chemistry Challenge Award of the US Environmental Protection Agency EPA in 2009. He had previously received the Humboldt Award for Senior U.S. Scientists in 1999, had been appointed to the Elf Chair of the French Academy of Sciences in 1998, and won the U.S. Presidential Young Investigator Award in 1989.

Matyjaszewski has an established cordial relationship with Mainz, having already participated in several academic projects here. He is also closely involved with polymer research workgroups at Mainz University and the Max Planck Institute for Polymer Research, where he has been a member of the Scientific Advisory Board since 2009. Prof. Gerhard Wegner, in his encomium on the prize winner, stated that "The conferring of the 2010 Gutenberg Lecture Award on Professor Matyjaszewski will help strengthen and extend the links between materials scientists associated with the Graduate School of Materials Science in Mainz and this pre-eminent and gifted scientist who is internationally renowned and extraordinarily influential."

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13630.php
http://www.mainz.uni-mainz.de/

Further reports about: ATRP Materials Science Merit Award Science TV

More articles from Awards Funding:

nachricht Radio astronomers score high marks in the competition for EU funding
12.01.2017 | Max-Planck-Institut für Radioastronomie

nachricht Europe wide cooperation on spinal cord injury research receives 1.34 Million Euros grant
12.12.2016 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>