Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arkansas Receives $3.3 Million Grant From National Science Foundation

04.09.2009
Arkansas scientists, students and information-technology workers will benefit from a new $3.3 million grant from the National Science Foundation.

The award, made possible by the American Recovery and Reinvestment Act of 2009, will enable researchers at the University of Arkansas and other colleges and universities in the state to build and support cyberinfrastructure and to train students and workers in information-technology systems, tools and services.

The grant, titled CI-TRAIN, or Cyberinfrastructure for Transformational Scientific Discovery in Arkansas and West Virginia, is part of a broader award to create a research consortium between the two states, which have researchers specializing in high-performance computing, visualization and modeling. At the University of Arkansas specifically, the federal funding will enhance supercomputing resources at the Arkansas High Performance Computing Center, which supports research in computational science, nano- and ferroelectric materials, multiscale visualization and many other research projects that require massive data storage.

“Beyond the critically important goal of helping scientists discover, understand and solve complex problems that affect our lives, this award will enhance undergraduate education, provide training for information-technology workers and support statewide initiatives such as the Arkansas Research and Education Optical Network,” said Amy Apon, professor of computer science and computer engineering, director of the computing center and principal investigator for the project.

In addition to Apon, other University of Arkansas researchers involved in the project are Fred Limp, University Professor, anthropology; Laurent Bellaiche, physics professor; and Douglas Spearot, assistant professor of mechanical engineering. Srinivasan Ramaswamy, professor and chair of the department of computer science at the University of Arkansas at Little Rock is also a co-principal investigator.

From a research perspective, the overall goal of the project is to create a nationally competitive environment for computation and visualization – techniques for creating images, diagrams and animations of scientific concepts and processes – and to develop both hardware and software to create and capture data that will enable a broad range of research in science and engineering. The partnership will include a substantial shared cluster – linked computers operating as a single computer – hosted by the Arkansas High Performance Computing Center.

Specifically, resources provided by the funding will enable research in:

• multiscale geomatics – gathering, storing, processing and delivery of geographic information – and geosciences,
• nanosience, including multiferronics and simulation of defects in nanocrystalline materials,
• real-time image-guided surgery,
• particle-based physics simulations of materials and processes,
• plant secondary cell wall reconstruction,
• scanning optical microscopy, and
• performance models of large-scale clusters that can be applied to large-scale resources.

Research in these areas will lead to design and improvement of devices such as actuators and sensors and products in visualizations, geosciences and virtual world. It will also improve approaches to real-time, image-guided surgery to enable safe obliteration of solid tumors anywhere in the human body. Finally, innovative studies that explore the three-dimensional structures of plant cell walls will assist in understanding how to cost-effectively recover components of the cell wall for use in bio-based product development.

As mentioned above, another primary goal of the funding is to provide education and workforce training in cyberinfrastructure and information technology. This will be accomplished through a network of faculty and professional staff – called Cyberinfrastructure Campus Champions. At each institution, these people will work to broaden the user base and expand operational support and use of the infrastructure.

“The program will provide training for workers who provide operational support for cyberinfrastructure resources, such as supercomputers and high-end visualization tools,” Apon said. “It will also expand integration with existing technology education programs at more than 200 high schools.”

Other participating Arkansas institutions include the University of Arkansas for Medical Sciences, University of Arkansas at Pine Bluff and Arkansas State University. All Arkansas Research and Education Optical Network member institutions will benefit from the project.

Limp holds the Leica Geosystems Chair in Geospatial Imaging and is director of the University of Arkansas Center for Advanced Spatial Technologies. Bellaiche holds the Twenty-First Century Professorship in Nanotechnology and Science Education.

More information about the NSF grant can be found at http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0918970. For more information about the Arkansas High Performance Computing Center, visit http://hpc.uark.edu/index.html. For more information about the Arkansas Center for Advanced Spatial Technologies, visit http://www.cast.uark.edu/.

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Awards Funding:

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Call for nominations of outstanding catalysis researchers for the Otto Roelen Medal 2018
20.06.2017 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>