Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new EU funded training for young scientists in cancer research

28.07.2015

Together with 17 partners, researchers of the University of Luxembourg have developed an international training network for young scientists in cancer research and, with it, successfully applied for the ambitious Marie Curie Programme of the European Commission.

 The European Union granted over three million euros to the so-called “MEL-PLEX” network, around 500.000 euros are intended for the Life Sciences Research Unit of the University of Luxembourg. This will finance two of the overall fifteen participating PhD students who will primarily work at the University of Luxembourg, as well as their research projects and their residences with project partners in Europe, USA and in Israel.

The “Marie Sklodowska Curie” programme of the European Union is funding training networks for young researchers with a focus on international mobility. “We are very happy that our project has received an excellent evaluation with 98 points out of 100. The competition at this tender is so strong that even projects with very good marks can still be refused”, tells Dr Thomas Sauter, Professor of Systems Biology at the University of Luxembourg and training coordinator for the whole network.

The MEL-PLEX Network (which stands for “Exploiting MELanoma disease comPLEXity to address European research training needs in translational cancer systems biology and cancer systems medicine”) is coordinated from Dublin and connects universities, hospitals and businesses from eleven different countries, among them Belgium, Luxembourg, Ireland, Denmark, Israel and USA. All of them work on skin cancer: “If detected too late, this cancer is generally lethal, because it is widely resistant to chemotherapy and no other alternative therapy has yet achieved any significant breakthrough”, explains professor Sauter.

... more about:
»cancer research »skin cancer

The search for new methods of early detection as well as for alternative therapies is thus particularly urgent. Therefore, a strong networking between different research areas and with companies is crucial: “Challenges like these, where vast amounts of data are involved among other things, cannot be tackled alone. Different scientific fields need to grow together”.

The training of the two PhD students, who have been chosen from 350 candidates, will be international, interdisciplinary and intersectoral. Sébastien de Landtsheer will initially work for 18 months in Luxembourg on a mathematical description of signalling pathways in skin cancer, in which over 100 different molecules are interacting. Then he will expand his project during three months at the University College of Dublin and six months in a pharmaceutical company of Boston.

“As I will be in contact with experts from different fields, I will learn more and be able to establish many contacts as opposed to staying in one institution only”, he says. His colleague Marco Albrecht emphasizes: “Thanks to the different partners of the network, we have ideal career conditions”. He plans, for his part, to create a 3D Model of a tumour in Luxembourg, which he will refine at the Hospital of the University of Dresden and at the company Optimata in Israel. The training will be completed by workshops on project planning, data analysis or, for example, microscopy.

Notes to the editor:

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642295.

Contact for journalists: Prof. Dr. Thomas Sauter, thomas.sauter@uni.lu, T: +352 46 66 44 – 6296

Weitere Informationen:

http://melplex.eu/ - Homepage of the MEL-PLEX training network
http://www.uni.lu - Homepage of the University of Luxembourg

Britta Schlüter | idw - Informationsdienst Wissenschaft

Further reports about: cancer research skin cancer

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>