Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new EU funded training for young scientists in cancer research

28.07.2015

Together with 17 partners, researchers of the University of Luxembourg have developed an international training network for young scientists in cancer research and, with it, successfully applied for the ambitious Marie Curie Programme of the European Commission.

 The European Union granted over three million euros to the so-called “MEL-PLEX” network, around 500.000 euros are intended for the Life Sciences Research Unit of the University of Luxembourg. This will finance two of the overall fifteen participating PhD students who will primarily work at the University of Luxembourg, as well as their research projects and their residences with project partners in Europe, USA and in Israel.

The “Marie Sklodowska Curie” programme of the European Union is funding training networks for young researchers with a focus on international mobility. “We are very happy that our project has received an excellent evaluation with 98 points out of 100. The competition at this tender is so strong that even projects with very good marks can still be refused”, tells Dr Thomas Sauter, Professor of Systems Biology at the University of Luxembourg and training coordinator for the whole network.

The MEL-PLEX Network (which stands for “Exploiting MELanoma disease comPLEXity to address European research training needs in translational cancer systems biology and cancer systems medicine”) is coordinated from Dublin and connects universities, hospitals and businesses from eleven different countries, among them Belgium, Luxembourg, Ireland, Denmark, Israel and USA. All of them work on skin cancer: “If detected too late, this cancer is generally lethal, because it is widely resistant to chemotherapy and no other alternative therapy has yet achieved any significant breakthrough”, explains professor Sauter.

... more about:
»cancer research »skin cancer

The search for new methods of early detection as well as for alternative therapies is thus particularly urgent. Therefore, a strong networking between different research areas and with companies is crucial: “Challenges like these, where vast amounts of data are involved among other things, cannot be tackled alone. Different scientific fields need to grow together”.

The training of the two PhD students, who have been chosen from 350 candidates, will be international, interdisciplinary and intersectoral. Sébastien de Landtsheer will initially work for 18 months in Luxembourg on a mathematical description of signalling pathways in skin cancer, in which over 100 different molecules are interacting. Then he will expand his project during three months at the University College of Dublin and six months in a pharmaceutical company of Boston.

“As I will be in contact with experts from different fields, I will learn more and be able to establish many contacts as opposed to staying in one institution only”, he says. His colleague Marco Albrecht emphasizes: “Thanks to the different partners of the network, we have ideal career conditions”. He plans, for his part, to create a 3D Model of a tumour in Luxembourg, which he will refine at the Hospital of the University of Dresden and at the company Optimata in Israel. The training will be completed by workshops on project planning, data analysis or, for example, microscopy.

Notes to the editor:

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642295.

Contact for journalists: Prof. Dr. Thomas Sauter, thomas.sauter@uni.lu, T: +352 46 66 44 – 6296

Weitere Informationen:

http://melplex.eu/ - Homepage of the MEL-PLEX training network
http://www.uni.lu - Homepage of the University of Luxembourg

Britta Schlüter | idw - Informationsdienst Wissenschaft

Further reports about: cancer research skin cancer

More articles from Awards Funding:

nachricht ERC: Six Advanced Grants for Helmholtz
10.04.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>