Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new EU funded training for young scientists in cancer research


Together with 17 partners, researchers of the University of Luxembourg have developed an international training network for young scientists in cancer research and, with it, successfully applied for the ambitious Marie Curie Programme of the European Commission.

 The European Union granted over three million euros to the so-called “MEL-PLEX” network, around 500.000 euros are intended for the Life Sciences Research Unit of the University of Luxembourg. This will finance two of the overall fifteen participating PhD students who will primarily work at the University of Luxembourg, as well as their research projects and their residences with project partners in Europe, USA and in Israel.

The “Marie Sklodowska Curie” programme of the European Union is funding training networks for young researchers with a focus on international mobility. “We are very happy that our project has received an excellent evaluation with 98 points out of 100. The competition at this tender is so strong that even projects with very good marks can still be refused”, tells Dr Thomas Sauter, Professor of Systems Biology at the University of Luxembourg and training coordinator for the whole network.

The MEL-PLEX Network (which stands for “Exploiting MELanoma disease comPLEXity to address European research training needs in translational cancer systems biology and cancer systems medicine”) is coordinated from Dublin and connects universities, hospitals and businesses from eleven different countries, among them Belgium, Luxembourg, Ireland, Denmark, Israel and USA. All of them work on skin cancer: “If detected too late, this cancer is generally lethal, because it is widely resistant to chemotherapy and no other alternative therapy has yet achieved any significant breakthrough”, explains professor Sauter.

... more about:
»cancer research »skin cancer

The search for new methods of early detection as well as for alternative therapies is thus particularly urgent. Therefore, a strong networking between different research areas and with companies is crucial: “Challenges like these, where vast amounts of data are involved among other things, cannot be tackled alone. Different scientific fields need to grow together”.

The training of the two PhD students, who have been chosen from 350 candidates, will be international, interdisciplinary and intersectoral. Sébastien de Landtsheer will initially work for 18 months in Luxembourg on a mathematical description of signalling pathways in skin cancer, in which over 100 different molecules are interacting. Then he will expand his project during three months at the University College of Dublin and six months in a pharmaceutical company of Boston.

“As I will be in contact with experts from different fields, I will learn more and be able to establish many contacts as opposed to staying in one institution only”, he says. His colleague Marco Albrecht emphasizes: “Thanks to the different partners of the network, we have ideal career conditions”. He plans, for his part, to create a 3D Model of a tumour in Luxembourg, which he will refine at the Hospital of the University of Dresden and at the company Optimata in Israel. The training will be completed by workshops on project planning, data analysis or, for example, microscopy.

Notes to the editor:

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642295.

Contact for journalists: Prof. Dr. Thomas Sauter,, T: +352 46 66 44 – 6296

Weitere Informationen: - Homepage of the MEL-PLEX training network - Homepage of the University of Luxembourg

Britta Schlüter | idw - Informationsdienst Wissenschaft

Further reports about: cancer research skin cancer

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>