Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1.5 Million Grant for HITS Astrophysicist Volker Springel

19.07.2012
Starting Grant from the European Research Council (ERC) – 1.5 million Euros for research on dark matter and galaxy formation

The astrophysicist Volker Springel is to receive a Starting Grant from the European Research Council (ERC). Volker Springel heads the Theoretical Astrophysics research group at the Heidelberg Institute for Theoretical Studies (HITS) and holds a professorship for Theoretical Astrophysics at the Heidelberg University.

With the requested funding of just under 1.5 million Euros for the next five years, the researcher plans to perform more precise computer simulations of galaxy formation. “This distinction for Volker Springel is also a success for us as the research facility where the research is carried out”, HITS director Prof. Andreas Reuter says.

The ERC Starting Grant is awarded to outstanding researchers all over Europe. The applicants have to submit an excellent research proposal and to demonstrate an impressive and highly promising scientific career.

Volker Springel is one of the most cited authors in his area of research and belongs to the “big hitters in astronomy” (for more details, visit http://www.physics.mcgill.ca/~jimgeach/wordcloud/authors.html). He became known to the wider public with his Millennium Simulation (for more details, visit http://www.mpa-garching.mpg.de/galform/press/). He received numerous awards, such as the Heinz Maier Leibnitz Prize and the Klung Wilhelmy Weberbank Award for Physics. Before Prof. Springel came to HITS and Heidelberg University in April 2010, he had been working at the Max-Planck Institute for Astrophysics in Garching and Harvard University in the US.

The title of the ERC-supported project is “Hydrodynamical Simulations of Galaxy Formation at the Peta- and Exascale”. The formation and evolution of galaxies is still barely understood, due to the extremely high complexity of the physical equations describing them. In order to track the evolution of the Universe from the Big Bang to the formation of galaxies, scientists have to run computer-based simulations with billions of objects interacting with each other. Calculating and processing such large sets of data requires modern supercomputers and efficient algorithms, like the ones Volker Springel and his group develop.

The aim of the project is to simulate the physical processes of galaxy formation in greater detail and to gain a better understanding of them. To this end, simulations with an unprecedented precision and resolution on the worldwide largest and most powerful computers will be performed. In a set of subprojects, Volker Springel and his team intend to adjust the simulations to run on the next generation of supercomputers, the so-called Exaflop systems. By using these machines at their full capacity, the HITS researchers hope to gain new insights into the fascinating history of our universe.

Further information and press contact:
Dr. Peter Saueressig
Public Relations
HITS Heidelberg Institute for Theoretical Studies
phone: +49-6221-533-245
fax: +49-6221-533-298
peter.saueressig@h-its.org
http://www.h-its.org
HITS
HITS is a private, non-profit research institute of the Klaus Tschira Foundation. The main focus is on data-driven basic research in different areas of sciences.
The current research groups at HITS are working on Molecular and Cellular Modeling, Molecular Biomechanics, Natural Language Processing, Scientific Computing, Scientific Databases and Visualization, and Theoretical Astrophysics. Additional groups will be established in the near future.

HITS is jointly managed by Dr. h.c. Klaus Tschira and Prof. Dr.-Ing. Andreas Reuter.

Dr. Peter Saueressig | idw
Further information:
http://www.h-its.org
http://www.h-its.org/english/press/index.php?we_objectID=902&pid=505

More articles from Awards Funding:

nachricht 11 million Euros for research into magnetic field sensors for medical diagnostics
27.05.2016 | Christian-Albrechts-Universität zu Kiel

nachricht Laser-based Production Process for High Efficiency Solar Cells Wins Award
11.05.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>