Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Widespread use on the horizon - Thermoelectrics conference breaks all records

17.08.2009
From 26th to 30th July, 2009, about 600 experts from 40 different countries met in Freiburg for the by far greatest thermoelectrics conference of all times.

The 28th International / 7th European Conference on Thermoelectrics yielded important results, e.g., in the discussion of how thermoelectric generators can be further improved. The path leading to widespread use of waste heat recycling is clearly laid out for thermoelectrics.

In his opening speech at the conference, Baden-Württemberg's minister of economic affairs, Ernst Pfister, emphasized the economic and environmental benefits of thermoelectrics in particular.

"New technologies for the utilization of unused heat fractions at least in part are in dire need", Pfister said in Freiburg, alluding to the fact that more than 60 percent of all consumed fossil primary energy are dissipated unused as heat energy. According to Pfister, as one of the most promising technologies enabling direct conversion of heat into electricity, thermoelectrics could contribute greatly to more efficient energy handling.

Apart from the conference host, Fraunhofer IPM, both the International and the European Thermoelectric Society can look back on a most successful week. Attracting an attendance of about 600, the event has grown in size and relevance in a way that would have been considered impossible just a few years ago.

Nearly twice the last year's number of experts took the opportunity to exchange views with their colleagues. And the international guests were not only impressed by the conference's scientific part but also by its diverse social program. The event started with a reception hosted by the City of Freiburg in the Historic Merchants' Hall on the Münster square. Halfway through the conference, an excursion into the Black Forest was organized and a gala dinner was held in the concert hall.

Conference highlights

- Materials: Improving material efficiency and recycling of tellurium-containing and therefore very expensive materials continue to be of highest priority.

- Manufacturing: So-called spark plasma sintering - a short-time sintering method similar to hot pressing - is increasingly gaining centre stage for manufacturing thermoelectric modules but also for volume production of thermoelectric devices.

- Refrigeration: Not only reducing fuel consumption provides its share in fighting climatic change. Avoiding CFCs in car air conditioning can also help in a valuable way. Small thermoelectric cooling systems that cool only the passengers rather than the whole car interior could replace conventional air conditioning.

- Waste-heat recycling: Based on vehicle tests with thermogenerators, the automotive industry predicts that efficient thermogenerators in conjunction with sophisticated power management will be able to improve fuel efficiency by around five to seven percent. Diesel and petrol engines make different demands on waste-heat recycling, however. This should be taken into account when optimizing the respective parameters such as, e.g., compression or exhaust gas temperature.

- Exhibition: A prototype car fitted with a thermoelectric generator for waste-heat recovery and presented by the Berlin based company IAV was one of the highlights of the exhibition accompanying the event. The Freiburg based company Micropelt, a spin-off of a Fraunhofer IPM development, presented commercial products for cooling applications and for energy self-sufficient sensor equipment. Apart from waste-heat recovery, generating minute amounts of energy for energy-independent sensors - e.g., for monitoring safety relevant parts such as aircraft shells - constitutes the second major application for thermoelectrics.

The future of thermoelectrics
In recent years, the development of thermoelectric materials has advanced tremendously with the result that widespread use of this technology can be expected in just a few years from now. Improving energy efficiency is a global issue. And thermoelectrics will contribute its share to that.

Assisted by the Federal State, Fraunhofer IPM is planning to establish a research association, "Thermoelectrics Baden-Württemberg", in Freiburg. This association will further accelerate material, module, and systems development and add to the strength of the Location of Germany and, especially, Baden-Württemberg. "Already, Freiburg is an established factor in thermoelectrics", says Harald Böttner, Chairman of the international Conference ICT2009 in Freiburg. "We are receiving a lot of acceptance from all sides. And politics are also willing to help us along our way." This, among other things, includes building a thermoelectrics competence centre on the Fraunhofer IPM's site. Therefore, Freiburg thermoelectrics can look to the future with great expectations and high motivation.

Your contact:
Dr. Harald Böttner
Head of Thermoelectric Systems department
Phone +49 761 8857-121
harald.boettner@ipm.fraunhofer.de
The Fraunhofer Institute for Physical Measurement Techniques IPM develops and implements turn-key optical sensor and imaging systems. In the thermoelectrics field, the institute occupies a leading position in materials research, simulation, and systems design. In thin film technology, Fraunhofer IPM works on materials, production processes, and systems; semiconductor gas sensors form a further field of activity.

Holger Kock | idw
Further information:
http://www.ict2009.its.org
http://www.ipm.fraunhofer.de

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>