Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech to Design Framework for Vehicle-to-Vehicle Communication

17.02.2014
Reseaarch proceeds to integrate vehicles into a communications network

Following a U.S. Department of Transportation call to require vehicle-to-vehicle communication technology for all cars and light trucks on the nation’s highways, the Virginia Tech Transportation Institute has been tapped to design the delivery integration framework that will allow vehicles to “talk” with their drivers and with other automobiles on the roadway.


Virginia Tech

A motorcycle passes a car during a demonstration of vehicle-to-vehicle communication technology by the Virginia Tech Transportation Institute.

The National Highway Traffic Safety Administration has awarded a $1 million follow-on to a $3 million project managed by the transportation institute.

The project’s focus: Design, test, and disseminate the initial recommended framework that controls how motorists receive communications — traffic warnings, the too-close approach of another vehicle, weather warnings, or text messages — while driving. Focus will be placed on the communication’s format, visual or audible, and the order and timing of such messages.

The Virginia Tech Transportation Institute has been building connected-vehicle technology since 2001, when the idea of drivers interacting with their vehicles in a manner similar to high-tech computers, and cars and trucks communicating with each other as well as infrastructure, was the product of fantasy television, movies, or books.

On Feb. 3, the National Highway Traffic Safety Administration announced its intention to pursue a mandate of this technology in light vehicles in an effort to improve highway safety, prevent crashes, and help alleviate congestion, among other potential benefits.

“We see this as a hugely progressive move. Vehicle communication technology has the great ability to improve safety, if it is implemented in a wise and safe way,” said Zac Doerzaph, director of the institute’s Center for Advanced Automotive Research and lead investigator on the project. “We’re trying to get ahead of the game to ensure design before connectivity proliferates the entire driving experience.”

The integration framework project builds on the institute’s already $30 million-and-growing funded projects related to connected-vehicle communication technology, including long-term research into crash-avoidance systems, automated driving, and naturalistic driver experiences behind the wheel.

The institute, in coordination with the Virginia Department of Transportation, has a $14 million connected-vehicle test bed along Interstates 66 and 495 near Fairfax, Va., that contains 43 wireless infrastructure devices installed along roadways, all communicating with dozens of cars, trucks, and motorcycles equipped with wireless communication systems. The test bed will soon expand to include 80 roadside devices.

Doerzaph and his team for several years have been testing various methods for drivers to receive key information in a wise, safe, and timely manner, without causing distraction or overwhelming the motorist with myriad details, such as non-emergency weather reports during high-congestion traffic.

Tests already have been done on driver interfaces such as augmented reality pop-ups on windshields or audible devices, both in simulated labs and on open highways, with motorists communicating with the car by voice or by gesture, such as “sweeping” away information on a screen with the wave of a hand.

“We want to coordinate the surge of information,” said Doerzaph, adding that the coming changes to how motorists interact with connected vehicles can be likened to the way the Internet changed how users interact with desktop computers. The key is to contain vital information fast, accurately, and as required.

Doerzaph says the framework being designed and subsequently documented as a set of design principles will serve as a reference guide by designers of apps and driver systems for connected automobile and related wireless devices, with driver safety and ease of use as a focus.

Challenges in implementing vehicle communication systems are myriad: From creating uniform warnings and data formats across varying handheld devices and vehicles, to sorting vital information from traffic officials that may be only for truck drivers and not passenger-car motorists, and stacking warnings and communications in order of importance. Also vital: Securing communication networks from hacking.

Motorists, too, should have the option of being entirely in control of not just the car – this study does not touch on fully self-driving or autonomous vehicles, still decades off – but the information they receive. If a motorist wishes to not be informed of, say, coupon deals from nearby restaurants, they should do so, said Doerzaph.

In its Feb. 3 announcement seen as a mandate for connected-vehicle use, U.S. Transportation Secretary Anthony Foxx said, “Vehicle-to-vehicle technology represents the next generation of auto safety improvements, building on the life-saving achievements we've already seen with safety belts and air bags. By helping drivers avoid crashes, this technology will play a key role in improving the way people get where they need to go while ensuring that the U.S. remains the leader in the global automotive industry.”

Several federally funded connected-vehicle research test beds are operating throughout the United States. Funding for the institute’s Fairfax test-bed project came from the U.S. Department of Transportation, the Virginia Department of Transportation, and Virginia Tech, among other resources. The 43 roadside wireless communication antennas installed around Interstates 66 and 495 corridors and receive information –basic safety-related messages -- from test cars equipped with their own wireless technology.

Virginia Tech also has smaller set-ups that facilitate testing of various traffic scenarios, including the Virginia Smart Road, at the transportation institute’s Blacksburg base, and at the Virginia International Raceway, near Danville, Va.

The institute also has been heavily involved with automated driving systems, teaming with automotive companies such as General Motors to study how drivers interact with varying stages of automated car technology, including parking systems and features that can halt or slow a car to avoid crash- or near-crash events. In 2013, Google brought its famed autonomous car to the Smart Road for testing.

Transportation experts consider connected-vehicle technology a stepping stone to achieving automation. Once cars are equipped with the ability to share information and modify driver behavior for the prevention of accidents, that same technology can also inform the vehicle to perform a safety maneuver.

“Our institute has the facilities and experience necessary to stay at the forefront of connected-automation research,” said Tom Dingus, director of the institute and an endowed professor with Virginia Tech’s Charles E. Via Jr. Department of Civil and Environmental Engineering. “This award is indicative of a successfully led program that is equipped with the tools to continue producing results that save lives, with more than $30 million in connected-vehicle research awarded since the start of the millennium.”

More resources are available at Virginia Tech News website.

Steven Mackay | Newswise
Further information:
http://www.vt.edu

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>