Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibrating Steering Wheel Guides Drivers While Keeping Their Eyes on the Road

25.04.2012
Carnegie Mellon and AT&T Researchers Evaluate Haptic Navigation Aid
A vibrating steering wheel is an effective way to keep a driver's eyes safely on the road by providing an additional means to convey directions from a car's navigation system, researchers at Carnegie Mellon University and AT&T Labs have shown.

The study, one of the first to evaluate combinations of audio, visual and haptic feedback for route guidance, found that younger drivers in particular were less distracted by a navigation system's display screen when they received haptic feedback from the vibrating steering wheel.
For elder drivers, the haptic feedback reinforced the auditory cues they normally prefer.

Though the haptic steering wheel generally improved driver performance and safety, the study findings suggest that simply giving the driver additional sensory inputs isn't always optimal. That's particularly the case for older drivers because the additional sensory feedback can strain the brain's capacity to process it.

Pictured above is the haptic simulator used in the study.

"Our findings suggest that, as navigation systems become more elaborate, it would be best to personalize the sensory feedback system based, at least in part, on the driver's age," said SeungJun Kim, systems scientist in Carnegie Mellon's Human-Computer Interaction Institute (HCII).

The findings will be presented June 21 at the International Conference on Pervasive Computing in Newcastle, England.

Vibrating steering wheels already are used by some car makers to alert drivers to such things as road hazards. But the haptic steering wheel under development by AT&T is capable of unusually nuanced pulsations and thus can convey more information. Twenty actuators on the rim of the AT&T wheel can be fired in any order. In this study, firing them in a clockwise sequence told a driver to turn right, while a counterclockwise sequence signaled a left turn.

"By using these types of vibration cues, we are taking advantage of what people are already familiar with, making them easier to learn," explained Kevin A. Li, a researcher with AT&T's user interface group in Florham Park, NJ.

Kim and fellow HCII scientists have developed methods for measuring the performance, attentiveness and cognitive load of drivers that involve a suite of sensors. For this study, they added the experimental AT&T steering wheel to their driving simulator.
Part of a research thrust of the National Science Foundation-sponsored Quality of Life Technology Center, the researchers were particularly interested in learning whether multi-modal feedback would improve the driving performance of elderly drivers. The number of drivers over the age of 65 is rapidly growing; improving the performance of older drivers despite progressive decay in their vision, hearing and general mobility can help maintain their mobility and independence.

Subjects of the study included 16 drivers ages 16-36 and 17 over the age of 65. In the HCII simulator, these people drove a course that included various traffic lights, stop signs and pedestrians while the researchers monitored their heart rate, pupil size, blink rate, brain wave activity and other measures of attention and cognitive load.

The researchers found that the proportion of time that a driver's eyes were off of the road was significantly less with the combination of auditory and haptic feedback than with the audio and visual feedback typical of most conventional GPS systems - 4 percent less for elder drivers and 9 percent less for younger drivers.
Combining all three modalities - audio, visual and haptic - significantly reduced eye-off-the-road time for the younger drivers, but not the older drivers. Kim said this may have to do with driver preference; self-reports showed older drivers favored audio feedback while younger drivers relied more on visual feedback.

But the researchers also found that combining all three modalities didn't reduce the cognitive workload of older drivers, a result that was in contrast to younger drivers. They concluded designers of navigation systems for older drivers may need to concentrate on reducing the driver's cognitive burden rather than resolving issues regarding divided attention.

"We are very excited about the benefits of adding haptic feedback to traditional audio-visual interfaces," said Anind K. Dey, associate professor in HCII. "In combination with our ability to measure cognitive load, we can not only design interfaces that people like and make them more efficient, but that also allow them to more easily focus on their task at hand."

In addition to Dey, Kim and Li, the research team included Jodi Forlizzi, associate professor in HCII, and Jin-Hyuk Hong, a post-doctoral researcher in HCII. General Motors, the National Science Foundation and the Quality of Life Technology Center sponsored this study.

The Human-Computer Interaction Institute is part of Carnegie Mellon's acclaimed School of Computer Science. Follow the school on Twitter @SCSatCMU.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>