Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Southampton helps drive supersonic car into schools

24.10.2008
Engineers at the University of Southampton are helping to bring the BLOODHOUND SSC supersonic car project into the classroom and lecture theatre.

World-leading experts in the School of Engineering Sciences at the University of Southampton are working with the BLOODHOUND SSC team to develop exciting ways of bringing science and engineering to life.

The University of Southampton is one of the UK's most active promoters of Science, Technology, Engineering and Mathematics (STEM) in schools, and runs extensive outreach programmes in engineering, chemistry, physics, acoustics, mathematics, oceanography, electronics and computer science.

Dr Kenji Takeda, senior lecturer in aeronautics at Southampton, explains: "We desperately need more smart young people to become scientists and engineers to tackle the big issues of the 21st century. Moving towards a low carbon economy is a massive challenge, and a big part of the solution is new technology. The youngsters of today are the ones who can step up to the plate and help create this new world."

As a key member of the BLOODHOUND Education Team, the University will bring its extensive expertise and enthusiasm in engineering outreach to the project to help engage youngsters in STEM subjects inside and outside the classroom. This is the core part of the Bloodhound Engineering Adventure, a UK project to stimulate the next generation of scientists and engineers to deliver the low-carbon economy of tomorrow.

Dr Takeda, the Southampton member of the BLOODHOUND Education Team, continues: "Engineers know that what they do is incredibly exciting, but putting that across to youngsters is tough. We're trying to take science into the classroom in a way that is exhilarating and inspiring. This iconic project is pushing the boundaries of engineering, and we're inviting everyone get involved."

The University of Southampton is also helping to develop BLOODHOUND@University, led by the University of the West of England Bristol (UWE), and working with Swansea University, in conjunction with the Engineering and Physical Sciences Research Council (EPSRC).

BLOODHOUND SSC (www.BLOODHOUNDSSC.com) is unique in providing open access to the engineering design and operation of the supersonic car and record attempts. BLOODHOUND@University will provide undergraduate students with a deep insight into the design challenges faced by the engineering team, and how they are overcome. Test data and engineering models will be made available, to provide a tremendous resource for lecturers and student alike.

Dr Takeda adds: "We have a huge opportunity to provide a step change in engineering education at university. Access to this level of engineering design detail in a real-world, cutting edge project, is unheard of. We hope that it will provide additional motivation to undergraduates to excel and become world-leading scientists and engineers."

The School of Engineering Sciences at the University of Southampton is a world-leader in racing car aerodynamics, engineering design and computing, and runs undergraduate degree programmes in Aeronautics & Astronautics, Mechanical Engineering and Ship Science. It runs one of the UK's most active schools outreach programmes to encourage young people to study science, engineering and mathematics, and consider careers in engineering.

Sue Wilson | alfa
Further information:
http://www.soton.ac.uk/ses

Further reports about: Bloodhound carbon economy iconic project supersonic car

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>