Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Targets Slick Winter Highways

20.12.2013
In the annual battle to keep roads clear of snow and ice, snowplows are about to get much more intelligent.

Officials in four states this winter are deploying hundreds of plows with custom-designed sensors that continually measure road and weather conditions. The new digital intelligence system, funded by the U.S. Department of Transportation and built by the National Center for Atmospheric Research (NCAR), is designed to reduce accidents and save states millions of dollars in winter maintenance costs.


Image courtesy Wikimedia Commons/Oregon Department of Transportation.

Cars and trucks facing heavy snow on Interstate 84 in Oregon. A new digital intelligence system that equips snowplows with custom-designed sensors is helping transportation officials clear winter roads more quickly and effectively.

The system, known as the Pikalert(TM) Enhanced Maintenance Decision Support System (EMDSS), is being activated on major highways across Michigan, Minnesota, and Nevada, as well as on Long Island, New York. If it passes key tests, it will be transferred to private vendors and become available to additional states in time for next winter.

“This offers the potential to transform winter driving safety,” said NCAR scientist Sheldon Drobot, who oversees the design of the system. “It gives road crews an incredibly detailed, mile-by-mile view of road conditions. They can quickly identify the stretches where dangerous ice and snow are building up.”

The new system combines the sensor measurements with satellite and radar observations and computer weather models, giving officials an unprecedented near-real time picture of road conditions. With updates every five to fifteen minutes, EMDSS will enable transportation officials to swiftly home in on dangerous stretches even before deteriorating conditions cause accidents.

“The U.S. Department of Transportation is committed to addressing the safety and mobility problems associated with adverse weather, especially through the use of intelligent transportation systems,” said Kenneth Leonard, director of the Department of Transportation's Intelligent Transportation Systems Joint Program Office. “This effort demonstrates the value of connected vehicle technologies, advanced weather prediction, and targeted decision support to enable state departments of transportation to more effectively maintain a high level of service on their roads.”

-----Constant flow of data-----

Motor vehicle accidents involving wintry conditions and other hazardous weather claim the lives of more than 4,000 people in the United States and injure several hundred thousand each year. To keep roads clear, a single state can spend tens of millions of dollars on maintenance operations over the course of one winter.

But transportation officials often lack critical information about road conditions in their own states. They rely on ground-based observing stations that can be spaced more than 60 miles apart. As a result, they have to estimate conditions between weather stations. Snow and ice may build up more quickly along particular stretches of road because of shading, north-facing curves, higher elevation, or small-scale differences in weather conditions.

If officials dispatch snowplows unnecessarily, or treat roads with sand, salt, or chemicals when not needed, they risk wasting money and harming the environment. If they do not treat the roads, however, drivers may face treacherous conditions.

By equipping hundreds of snowplows and transportation supervisor trucks with sensors, officials can now get information along every mile of the roads traveled by the vehicles. The sensors collect weather data, such as temperature and humidity, as well as indirect indications of road conditions, such as the activation of antilock brakes or windshield wipers.

Using GPS technology, the measurements are coded with location and time. They are transmitted via the Internet or dedicated radio frequencies or cellular networks to an NCAR database, where they are integrated with other local weather data, traffic observations, and details about the road’s surface material. The resulting data are subjected to quality control measures to weed out false positives (such as a vehicle slowing down because of construction rather than slippery conditions).

The resulting detail about atmospheric and road conditions is relayed to state transportation officials to give them a near-real time view of ice and snow buildup, as well as what to expect in the next few hours from incoming weather systems.

State transportation officials said the system will contribute significantly to safer roads.

"Collecting atmosphere and road surface condition data from vehicles in near-real time provides another important layer of information never before available,” said Steven Cook, operations/maintenance field services engineer of the Michigan Department of Transportation. “With information like this, we can more accurately pinpoint changing road conditions in the winter that need treatment and alert drivers of potential hazardous conditions before they encounter them."

“This additional location-specific information can help our maintenance crews provide a more effective and efficient response to weather events, resulting in improved road conditions and increased safety for all drivers,” added Denise Inda, the chief traffic operations engineer of the Nevada Department of Transportation.

Drobot said he is looking forward to evaluating EMDSS.

“We want to reduce that white-knuckle experience of suddenly skidding on ice,” Drobot said.

EMDSS is the leading edge of a revolutionary approach to keeping motor vehicles safer in inclement weather. The next step, as early as next summer, will be to begin providing information to drivers about potentially hazardous conditions in their immediate vicinity, alerting them to slow down or take alternate routes.

Several partners, including the universities of Nevada and Michigan and the firms Ameritrack and Synesis, relay information from the sensors to the main database at NCAR.

Pikalert(TM) is a trademark of the University Corporation for Atmospheric Research.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

On the Web:

TEDx presentation about the new techology:
http://www.youtube.com/watch?v=IM16YUrhzRY&list
=PLyWrz5bdXbVMZewo4hcMxwO2vVmO_nUdI&index=7
NCAR/UCAR news releases, images, and more:
www.ucar.edu/atmosnews
Contact Information
David Hosansky, NCAR/UCAR Media Relations
303-497-8611
hosansky@ucar.edu
Zhenya Gallon, NCAR/UCAR Media Relations
303-497-8607
zhenya@ucar.edu
Sheldon Drobot, NCAR Scientist
303-497-2705
drobot@ucar.edu

David Hosansky | Newswise
Further information:
http://www.ucar.edu

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>