Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Technology Targets Slick Winter Highways

In the annual battle to keep roads clear of snow and ice, snowplows are about to get much more intelligent.

Officials in four states this winter are deploying hundreds of plows with custom-designed sensors that continually measure road and weather conditions. The new digital intelligence system, funded by the U.S. Department of Transportation and built by the National Center for Atmospheric Research (NCAR), is designed to reduce accidents and save states millions of dollars in winter maintenance costs.

Image courtesy Wikimedia Commons/Oregon Department of Transportation.

Cars and trucks facing heavy snow on Interstate 84 in Oregon. A new digital intelligence system that equips snowplows with custom-designed sensors is helping transportation officials clear winter roads more quickly and effectively.

The system, known as the Pikalert(TM) Enhanced Maintenance Decision Support System (EMDSS), is being activated on major highways across Michigan, Minnesota, and Nevada, as well as on Long Island, New York. If it passes key tests, it will be transferred to private vendors and become available to additional states in time for next winter.

“This offers the potential to transform winter driving safety,” said NCAR scientist Sheldon Drobot, who oversees the design of the system. “It gives road crews an incredibly detailed, mile-by-mile view of road conditions. They can quickly identify the stretches where dangerous ice and snow are building up.”

The new system combines the sensor measurements with satellite and radar observations and computer weather models, giving officials an unprecedented near-real time picture of road conditions. With updates every five to fifteen minutes, EMDSS will enable transportation officials to swiftly home in on dangerous stretches even before deteriorating conditions cause accidents.

“The U.S. Department of Transportation is committed to addressing the safety and mobility problems associated with adverse weather, especially through the use of intelligent transportation systems,” said Kenneth Leonard, director of the Department of Transportation's Intelligent Transportation Systems Joint Program Office. “This effort demonstrates the value of connected vehicle technologies, advanced weather prediction, and targeted decision support to enable state departments of transportation to more effectively maintain a high level of service on their roads.”

-----Constant flow of data-----

Motor vehicle accidents involving wintry conditions and other hazardous weather claim the lives of more than 4,000 people in the United States and injure several hundred thousand each year. To keep roads clear, a single state can spend tens of millions of dollars on maintenance operations over the course of one winter.

But transportation officials often lack critical information about road conditions in their own states. They rely on ground-based observing stations that can be spaced more than 60 miles apart. As a result, they have to estimate conditions between weather stations. Snow and ice may build up more quickly along particular stretches of road because of shading, north-facing curves, higher elevation, or small-scale differences in weather conditions.

If officials dispatch snowplows unnecessarily, or treat roads with sand, salt, or chemicals when not needed, they risk wasting money and harming the environment. If they do not treat the roads, however, drivers may face treacherous conditions.

By equipping hundreds of snowplows and transportation supervisor trucks with sensors, officials can now get information along every mile of the roads traveled by the vehicles. The sensors collect weather data, such as temperature and humidity, as well as indirect indications of road conditions, such as the activation of antilock brakes or windshield wipers.

Using GPS technology, the measurements are coded with location and time. They are transmitted via the Internet or dedicated radio frequencies or cellular networks to an NCAR database, where they are integrated with other local weather data, traffic observations, and details about the road’s surface material. The resulting data are subjected to quality control measures to weed out false positives (such as a vehicle slowing down because of construction rather than slippery conditions).

The resulting detail about atmospheric and road conditions is relayed to state transportation officials to give them a near-real time view of ice and snow buildup, as well as what to expect in the next few hours from incoming weather systems.

State transportation officials said the system will contribute significantly to safer roads.

"Collecting atmosphere and road surface condition data from vehicles in near-real time provides another important layer of information never before available,” said Steven Cook, operations/maintenance field services engineer of the Michigan Department of Transportation. “With information like this, we can more accurately pinpoint changing road conditions in the winter that need treatment and alert drivers of potential hazardous conditions before they encounter them."

“This additional location-specific information can help our maintenance crews provide a more effective and efficient response to weather events, resulting in improved road conditions and increased safety for all drivers,” added Denise Inda, the chief traffic operations engineer of the Nevada Department of Transportation.

Drobot said he is looking forward to evaluating EMDSS.

“We want to reduce that white-knuckle experience of suddenly skidding on ice,” Drobot said.

EMDSS is the leading edge of a revolutionary approach to keeping motor vehicles safer in inclement weather. The next step, as early as next summer, will be to begin providing information to drivers about potentially hazardous conditions in their immediate vicinity, alerting them to slow down or take alternate routes.

Several partners, including the universities of Nevada and Michigan and the firms Ameritrack and Synesis, relay information from the sensors to the main database at NCAR.

Pikalert(TM) is a trademark of the University Corporation for Atmospheric Research.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

On the Web:

TEDx presentation about the new techology:
NCAR/UCAR news releases, images, and more:
Contact Information
David Hosansky, NCAR/UCAR Media Relations
Zhenya Gallon, NCAR/UCAR Media Relations
Sheldon Drobot, NCAR Scientist

David Hosansky | Newswise
Further information:

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>