Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New storage system design brings hydrogen cars closer to reality

06.04.2009
Researchers have developed a critical part of a hydrogen storage system for cars that makes it possible to fill up a vehicle's fuel tank within five minutes with enough hydrogen to drive 300 miles.

The system uses a fine powder called metal hydride to absorb hydrogen gas. The researchers have created the system's heat exchanger, which circulates coolant through tubes and uses fins to remove heat generated as the hydrogen is absorbed by the powder.

The heat exchanger is critical because the system stops absorbing hydrogen effectively if it overheats, said Issam Mudawar, a professor of mechanical engineering who is leading the research.

"The hydride produces an enormous amount of heat," Mudawar said. "It would take a minimum of 40 minutes to fill the tank without cooling, and that would be entirely impractical."

Researchers envision a system that would enable motorists to fill their car with hydrogen within a few minutes. The hydrogen would then be used to power a fuel cell to generate electricity to drive an electric motor.

The research, funded by General Motors Corp. and directed by GM researchers Darsh Kumar, Michael Herrmann and Abbas Nazri, is based at the Hydrogen Systems Laboratory at Purdue's Maurice J. Zucrow Laboratories. In February, the team applied for three provisional patents related to this technology.

"The idea is to have a system that fills the tank and at the same time uses accessory connectors that supply coolant to extract the heat," said Mudawar, who is working with mechanical engineering graduate student Milan Visaria and Timothée Pourpoint, a research assistant professor of aeronautics and astronautics and manager of the Hydrogen Systems Laboratory. "This presented an engineering challenge because we had to figure out how to fill the fuel vessel with hydrogen quickly while also removing the heat efficiently. The problem is, nobody had ever designed this type of heat exchanger before. It's a whole new animal that we designed from scratch."

The metal hydride is contained in compartments inside the storage "pressure vessel." Hydrogen gas is pumped into the vessel at high pressure and absorbed by the powder.

"This process is reversible, meaning the hydrogen gas may be released from the metal hydride by decreasing the pressure in the storage vessel," Mudawar said. "The heat exchanger is fitted inside the hydrogen storage pressure vessel. Due to space constraints, it is essential that the heat exchanger occupy the least volume to maximize room for hydrogen storage."

Conventional automotive coolant flows through a U-shaped tube traversing the length of the pressure vessel and heat exchanger. The heat exchanger, which is made mostly of aluminum, contains a network of thin fins that provide an efficient cooling path between the metal hydride and the coolant.

"This milestone paves the way for practical on-board hydrogen storage systems that can be charged multiple times in much the same way a gasoline tank is charged today," said Kumar, a researcher at GM's Chemical & Environmental Sciences Laboratory and the GM R&D Center in Warren, Mich. "As newer and better metal hydrides are developed by research teams worldwide, the heat exchanger design will provide a ready solution for the automobile industry."

The researchers have developed the system over the past two years. Because metal hydride reacts readily with both air and moisture, the system must be assembled in an airtight chamber, Pourpoint said.

Research activities at the hydrogen laboratory involve faculty members from the schools of aeronautics and astronautics, mechanical engineering, and electrical and computer engineering.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Issam Mudawar, (765) 494-5705, mudawar@ecn.purdue.edu
Darsh Kumar, (586) 986-1614, sudarshan.kumar@gm.com
Timothée Pourpoint, 765-494-1541, timothee@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Automotive Engineering:

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>