Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New storage system design brings hydrogen cars closer to reality

06.04.2009
Researchers have developed a critical part of a hydrogen storage system for cars that makes it possible to fill up a vehicle's fuel tank within five minutes with enough hydrogen to drive 300 miles.

The system uses a fine powder called metal hydride to absorb hydrogen gas. The researchers have created the system's heat exchanger, which circulates coolant through tubes and uses fins to remove heat generated as the hydrogen is absorbed by the powder.

The heat exchanger is critical because the system stops absorbing hydrogen effectively if it overheats, said Issam Mudawar, a professor of mechanical engineering who is leading the research.

"The hydride produces an enormous amount of heat," Mudawar said. "It would take a minimum of 40 minutes to fill the tank without cooling, and that would be entirely impractical."

Researchers envision a system that would enable motorists to fill their car with hydrogen within a few minutes. The hydrogen would then be used to power a fuel cell to generate electricity to drive an electric motor.

The research, funded by General Motors Corp. and directed by GM researchers Darsh Kumar, Michael Herrmann and Abbas Nazri, is based at the Hydrogen Systems Laboratory at Purdue's Maurice J. Zucrow Laboratories. In February, the team applied for three provisional patents related to this technology.

"The idea is to have a system that fills the tank and at the same time uses accessory connectors that supply coolant to extract the heat," said Mudawar, who is working with mechanical engineering graduate student Milan Visaria and Timothée Pourpoint, a research assistant professor of aeronautics and astronautics and manager of the Hydrogen Systems Laboratory. "This presented an engineering challenge because we had to figure out how to fill the fuel vessel with hydrogen quickly while also removing the heat efficiently. The problem is, nobody had ever designed this type of heat exchanger before. It's a whole new animal that we designed from scratch."

The metal hydride is contained in compartments inside the storage "pressure vessel." Hydrogen gas is pumped into the vessel at high pressure and absorbed by the powder.

"This process is reversible, meaning the hydrogen gas may be released from the metal hydride by decreasing the pressure in the storage vessel," Mudawar said. "The heat exchanger is fitted inside the hydrogen storage pressure vessel. Due to space constraints, it is essential that the heat exchanger occupy the least volume to maximize room for hydrogen storage."

Conventional automotive coolant flows through a U-shaped tube traversing the length of the pressure vessel and heat exchanger. The heat exchanger, which is made mostly of aluminum, contains a network of thin fins that provide an efficient cooling path between the metal hydride and the coolant.

"This milestone paves the way for practical on-board hydrogen storage systems that can be charged multiple times in much the same way a gasoline tank is charged today," said Kumar, a researcher at GM's Chemical & Environmental Sciences Laboratory and the GM R&D Center in Warren, Mich. "As newer and better metal hydrides are developed by research teams worldwide, the heat exchanger design will provide a ready solution for the automobile industry."

The researchers have developed the system over the past two years. Because metal hydride reacts readily with both air and moisture, the system must be assembled in an airtight chamber, Pourpoint said.

Research activities at the hydrogen laboratory involve faculty members from the schools of aeronautics and astronautics, mechanical engineering, and electrical and computer engineering.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Issam Mudawar, (765) 494-5705, mudawar@ecn.purdue.edu
Darsh Kumar, (586) 986-1614, sudarshan.kumar@gm.com
Timothée Pourpoint, 765-494-1541, timothee@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>