Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Solar Car From U-Michigan Has Sleek, Asymmetrical Design

20.06.2013
The lopsided solar car named Generation, unveiled today, might be the oddest-looking vehicle the top-ranked University of Michigan team has ever built. But the bold shape is a calculated effort to design the most efficient car possible, given major changes in World Solar Challenge race rules.

The World Solar Challenge is an 1,800-mile, week-long endurance contest across the continent of Australia that takes place every other fall. The U-M team has come in third place five times, most recently in 2011. The reigning national champions are hoping that Generation can carry them to their first world race victory this October.

"We spent a lot of time refining the design and we're feeling really good about it," said Eric Hausman, team project manager and senior in industrial and operations engineering.

The most significant rule change for 2013 is that cars must have four wheels instead of three. That, Hausman says, is the biggest shift since 2007, when the driver moved from lying down to seated. Both new requirements called for teams to essentially start from scratch and outline new vehicle shapes.

"So in '07, you had to figure out where to put the driver in the air foil," Hausman said. "This year, it's similar. You have to figure out how to arrange the wheels and the driver in the new optimal position, and we think we've found that basic geometry."

The component the team had the most leeway with wasn't the wheels, but rather the driver's seat—nicknamed the "butt bucket" by the team because that's essentially what it is. In the old three-wheeled cars, the butt bucket was situated right behind the front wheel—encased in the same fairing, actually.

Under the new rules, the wheels can't be right next to each other, so if the team were to arrange them like wheels in a regular car, the bucket would hang down below the lower surface, reducing the car's efficiency. So the team didn't put it there.

"We have the driver and two wheels all in one giant fairing on the left side of the car and on the right side, we have two small fairings—one for each wheel," Hausman said. "Aerodynamically, it's about creating as few bumps on the surface as possible. The design also reduces shading of the solar cells by placing the canopy to the side."

From the front, Generation is reminiscent of a motorcycle with a sidecar, but it's not as lopsided as it looks, the students say. The team put most of the heavy equipment on what would be the passenger's side to keep Generation's center of gravity in its center—where it needs to be to keep the car stable.

"Having four wheels will change a lot of things about the way we race this car," said Matt Goldstein, a senior in computer science and engineering who heads the team's strategy division. "This is a new concept to us and a different design, so we will have to adjust our strategy appropriately. The new regulations will definitely stir the pot and I am excited to make our best shot at a championship."

The team has described its cars as "ultimate electric vehicles," as they run off a battery charged by sunlight. While solar cars aren't likely to be viable in the near future, there are other more immediate applications for the technologies the team develops, working in close collaboration with industry. And the new rules, which also require that drivers sit slightly more upright and have a wider field of vision, make the 2013 vehicles a bit more like cars on the road today.

"We are very proud of this car," said crew chief Bryan Mazor, a senior in physics who leads the team's engineering division. "It is a very efficient, very aerodynamic design. We were also able to build faster than ever through the support of our sponsors. Now we'll be able to test every facet of this car, in preparation for World Solar Challenge."

Major sponsors this year include General Motors, Ford, IMRA, the U-M College of Engineering, Qatar Airways and Siemens.

The World Solar Challenge is Oct. 6-13, 2013, from Darwin to Adelaide, Australia. With more than 100 members from schools and colleges across the university, the U-M Solar Car Team is one of the largest student organizations on campus. U-M's team has finished first in the North American Solar Challenge seven times.

U-M Solar Car Team: www.umsolar.com

Nicole Casal Moore | Newswise
Further information:
http://www.umich.edu
http://www.umsolar.com

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>