Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharing data links in networks of cars

06.07.2012
A new algorithm lets networks of Wi-Fi-connected cars, whose layout is constantly changing, share a few expensive links to the Internet.

Wi-Fi is coming to our cars. Ford Motor Co. has been equipping cars with Wi-Fi transmitters since 2010; according to an Agence France-Presse story last year, the company expects that by 2015, 80 percent of the cars it sells in North America will have Wi-Fi built in.


Graphic: Christine Daniloff

The same article cites a host of other manufacturers worldwide that either offer Wi-Fi in some high-end vehicles or belong to standards organizations that are trying to develop recommendations for automotive Wi-Fi.

Two Wi-Fi-equipped cars sitting at a stoplight could exchange information free of charge, but if they wanted to send that information to the Internet, they’d probably have to use a paid service such as the cell network or a satellite system. At the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, taking place this month in Portugal, researchers from MIT, Georgetown University and the National University of Singapore (NUS) will present a new algorithm that would allow Wi-Fi-connected cars to share their Internet connections. “In this setting, we’re assuming that Wi-Fi is cheap, but 3G is expensive,” says Alejandro Cornejo, a graduate student in electrical engineering and computer science at MIT and lead author on the paper.

The general approach behind the algorithm is to aggregate data from hundreds of cars in just a small handful, which then upload it to the Internet. The problem, of course, is that the layout of a network of cars is constantly changing in unpredictable ways. Ideally, the aggregators would be those cars that come into contact with the largest number of other cars, but they can’t be identified in advance.

Cornejo, Georgetown’s Calvin Newport and NUS’s Seth Gilbert — all three of whom did or are doing their doctoral work in Nancy Lynch’s group at MIT’s Computer Science and Artificial Intelligence Laboratory — began by considering the case in which every car in a fleet of cars will reliably come into contact with some fraction — say, 1/x — of the rest of the fleet in a fixed period of time. In the researchers’ scheme, when two cars draw within range of each other, only one of them conveys data to the other; the selection of transmitter and receiver is random. “We flip a coin for it,” Cornejo says.

Over time, however, “we bias the coin toss,” Cornejo explains. “Cars that have already aggregated a lot will start ‘winning’ more and more, and you get this chain reaction. The more people you meet, the more likely it is that people will feed their data to you.” The shift in probabilities is calculated relative to 1/x — the fraction of the fleet that any one car will meet.

The smaller the value of x, the smaller the number of cars required to aggregate the data from the rest of the fleet. But for realistic assumptions about urban traffic patterns, Cornejo says, 1,000 cars could see their data aggregated by only about five.

Realistically, it’s not a safe assumption that every car will come in contact with a consistent fraction of the others: A given car might end up collecting some other cars’ data and then disappearing into a private garage. But the researchers were able to show that, if the network of cars can be envisioned as a series of dense clusters with only sparse connections between them, the algorithm will still work well.

Weirdly, however, the researchers’ mathematical analysis shows that if the network is a series of dense clusters with slightly more connections between them, aggregation is impossible. “There’s this paradox of connectivity where if you have these isolated clusters, which are well-connected, then we can guarantee that there will be aggregation in the clusters,” Cornejo says. “But if the clusters are well connected, but they’re not isolated, then we can show that it’s impossible to aggregate. It’s not only our algorithm that fails; you can’t do it.”

“In general, the ability to have cheap computers and cheap sensors means that we can generate a huge amount of data about our environment,” says John Heidemann, a research professor at the University of Southern California’s Information Sciences Institute. “Unfortunately, what’s not cheap is communications.”

Heidemann says that the real advantage of aggregation is that it enables the removal of redundancies in data collected by different sources, so that transmitting the data requires less bandwidth. Although Heidemann’s research focuses on sensor networks, he suspects that networks of vehicles could partake of those advantages as well.

“If you were trying to analyze vehicle traffic, there’s probably 10,000 cars on the Los Angeles Freeway that know that there’s a traffic jam. You don’t need every one of them to tell you that,” he says.

Kimberly Allen | EurekAlert!
Further information:
http://www.mit.edu
http://web.mit.edu/newsoffice/2012/sharing-wifi-among-cars-0705.html

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Innovative LED High Power Light Source for UV

22.06.2017 | Physics and Astronomy

Mathematical confirmation: Rewiring financial networks reduces systemic risk

22.06.2017 | Business and Finance

Spin liquids − back to the roots

22.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>