Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe driving in city traffic

06.05.2014

UR:BAN research initiative develops assistance systems for city drivers

In future, cars with anticipatory driver assistance systems will help drivers to navigate their way through dense urban traffic without stress and above all safely.


urban driver's assistance

© Fraunhofer IAO

A taste of the solutions capable of transforming this vision into reality will be presented on May 14 by the 31 partners collaborating in the UR:BAN research initiative. The project, which runs to mid-2016, aims to develop new driver assistance systems and solutions for safe and efficient traffic management.

The UR:BAN collaborative research project focuses on cognitive assistance, networked traffic systems, and human factors in traffic. 31 partners – from the automotive sector and its suppliers, electronics and software companies, universities and research institutes – are developing smart, cooperative driver assistance and traffic management systems specifically tailored to the needs of the urban environment. The aim is to define a set of technical specifications for new vehicles that will permit the design of safer and more efficient mobility solutions.

Ideally, a driver assistance system enhances the driver’s ability to handle critical situations and anticipate the dangers typically encountered on the road. A modern system specifically adapted to the urban environment relieves the driver through its optimized human-machine interaction, which allows the driver to concentrate on essential tasks and avoid accidents.

Fraunhofer IAO’s scientists have been working together with Bosch, BMW, Daimler, Opel, and other research partners to investigate behavior prediction and intention detection, for example in connection with braking maneuvers, and how this information might be integrated into driver assistance systems.

Predicting driver intention minimizes reaction times and is the key to significant advances in the urban driving environment. Optimizing systems that provide intuitive assistance based on these findings for urban traffic conditions mitigates hazardous situations and helps prevent accidents.

On May 14, 2014, the partners in this collaborative research project will present the results of their work so far in the giant aircraft hangar at the German Aerospace Center’s (DLR) site in Braunschweig. Some 150 invited guests from industry, research, government departments, urban administrations and the press are expected to attend the event.

The UR:BAN research initiative is funded by the German Federal Ministry of Economics and Energy (BMWi) to the tune of 40 million euros. Industrial partners are contributing a further 40 million euros. In addition to Fraunhofer IAO and other institutes of research, the participants in the project comprise companies in the automotive, software and telecommunications sectors.

Contact:
Frederik Diederichs
Human Factors Engineering
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2266
Email frederik.diederichs@iao.fraunhofer.de

Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/engineering-systems/1096-saf...

Juliane Segedi | Fraunhofer-Institut

Further reports about: DLR Human IAO Optimizing accidents cognitive driver assistance Systems traffic management vehicles

More articles from Automotive Engineering:

nachricht Cost-efficiency of plug-in hybrids calculated a thousand times faster
22.04.2015 | Chalmers University of Technology

nachricht Newly developed diamond transistor expected to reduce energy consumption in automobiles
20.02.2015 | Waseda University

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>