Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe driving in city traffic

06.05.2014

UR:BAN research initiative develops assistance systems for city drivers

In future, cars with anticipatory driver assistance systems will help drivers to navigate their way through dense urban traffic without stress and above all safely.


urban driver's assistance

© Fraunhofer IAO

A taste of the solutions capable of transforming this vision into reality will be presented on May 14 by the 31 partners collaborating in the UR:BAN research initiative. The project, which runs to mid-2016, aims to develop new driver assistance systems and solutions for safe and efficient traffic management.

The UR:BAN collaborative research project focuses on cognitive assistance, networked traffic systems, and human factors in traffic. 31 partners – from the automotive sector and its suppliers, electronics and software companies, universities and research institutes – are developing smart, cooperative driver assistance and traffic management systems specifically tailored to the needs of the urban environment. The aim is to define a set of technical specifications for new vehicles that will permit the design of safer and more efficient mobility solutions.

Ideally, a driver assistance system enhances the driver’s ability to handle critical situations and anticipate the dangers typically encountered on the road. A modern system specifically adapted to the urban environment relieves the driver through its optimized human-machine interaction, which allows the driver to concentrate on essential tasks and avoid accidents.

Fraunhofer IAO’s scientists have been working together with Bosch, BMW, Daimler, Opel, and other research partners to investigate behavior prediction and intention detection, for example in connection with braking maneuvers, and how this information might be integrated into driver assistance systems.

Predicting driver intention minimizes reaction times and is the key to significant advances in the urban driving environment. Optimizing systems that provide intuitive assistance based on these findings for urban traffic conditions mitigates hazardous situations and helps prevent accidents.

On May 14, 2014, the partners in this collaborative research project will present the results of their work so far in the giant aircraft hangar at the German Aerospace Center’s (DLR) site in Braunschweig. Some 150 invited guests from industry, research, government departments, urban administrations and the press are expected to attend the event.

The UR:BAN research initiative is funded by the German Federal Ministry of Economics and Energy (BMWi) to the tune of 40 million euros. Industrial partners are contributing a further 40 million euros. In addition to Fraunhofer IAO and other institutes of research, the participants in the project comprise companies in the automotive, software and telecommunications sectors.

Contact:
Frederik Diederichs
Human Factors Engineering
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2266
Email frederik.diederichs@iao.fraunhofer.de

Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/engineering-systems/1096-saf...

Juliane Segedi | Fraunhofer-Institut

Further reports about: DLR Human IAO Optimizing accidents cognitive driver assistance Systems traffic management vehicles

More articles from Automotive Engineering:

nachricht ShAPEing the future of magnesium car parts
23.08.2017 | DOE/Pacific Northwest National Laboratory

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>