Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe driving in city traffic

06.05.2014

UR:BAN research initiative develops assistance systems for city drivers

In future, cars with anticipatory driver assistance systems will help drivers to navigate their way through dense urban traffic without stress and above all safely.


urban driver's assistance

© Fraunhofer IAO

A taste of the solutions capable of transforming this vision into reality will be presented on May 14 by the 31 partners collaborating in the UR:BAN research initiative. The project, which runs to mid-2016, aims to develop new driver assistance systems and solutions for safe and efficient traffic management.

The UR:BAN collaborative research project focuses on cognitive assistance, networked traffic systems, and human factors in traffic. 31 partners – from the automotive sector and its suppliers, electronics and software companies, universities and research institutes – are developing smart, cooperative driver assistance and traffic management systems specifically tailored to the needs of the urban environment. The aim is to define a set of technical specifications for new vehicles that will permit the design of safer and more efficient mobility solutions.

Ideally, a driver assistance system enhances the driver’s ability to handle critical situations and anticipate the dangers typically encountered on the road. A modern system specifically adapted to the urban environment relieves the driver through its optimized human-machine interaction, which allows the driver to concentrate on essential tasks and avoid accidents.

Fraunhofer IAO’s scientists have been working together with Bosch, BMW, Daimler, Opel, and other research partners to investigate behavior prediction and intention detection, for example in connection with braking maneuvers, and how this information might be integrated into driver assistance systems.

Predicting driver intention minimizes reaction times and is the key to significant advances in the urban driving environment. Optimizing systems that provide intuitive assistance based on these findings for urban traffic conditions mitigates hazardous situations and helps prevent accidents.

On May 14, 2014, the partners in this collaborative research project will present the results of their work so far in the giant aircraft hangar at the German Aerospace Center’s (DLR) site in Braunschweig. Some 150 invited guests from industry, research, government departments, urban administrations and the press are expected to attend the event.

The UR:BAN research initiative is funded by the German Federal Ministry of Economics and Energy (BMWi) to the tune of 40 million euros. Industrial partners are contributing a further 40 million euros. In addition to Fraunhofer IAO and other institutes of research, the participants in the project comprise companies in the automotive, software and telecommunications sectors.

Contact:
Frederik Diederichs
Human Factors Engineering
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2266
Email frederik.diederichs@iao.fraunhofer.de

Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/engineering-systems/1096-saf...

Juliane Segedi | Fraunhofer-Institut

Further reports about: DLR Human IAO Optimizing accidents cognitive driver assistance Systems traffic management vehicles

More articles from Automotive Engineering:

nachricht EU-LIVE launches: European researchers and manufacturers developing smart urban light vehicles
22.06.2015 | Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH

nachricht Cost-efficiency of plug-in hybrids calculated a thousand times faster
22.04.2015 | Chalmers University of Technology

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>