Researchers Create Car Parts From Coconuts

The Baylor researchers have developed a technology to use coconut fiber as a replacement for synthetic polyester fibers in compression molded composites. Specifically, their goal is to use the coconut fibers to make trunk liners, floorboards and interior door covers on cars, marking the first time coconut fibers have been used in these applications.

Since coconuts are an abundant, renewable resource in all countries near the equator, Baylor's team is working to create multiple products that could be manufactured from coconuts in those regions using simple and inexpensive technology. With an estimated 11 million coconut farmers in the world making an average annual income of $500, the Baylor researchers hope to triple the coconut farmer’s annual income by increasing the market price for each coconut to 30 cents, which could have a substantial effect on the farmer’s quality of life.

“What we hope to do is create a viable market for the poor coconut farmer,” said Dr. Walter Bradley, Distinguished Professor of Engineering at Baylor, who is leading the project. “Our goal is to create millions of pounds of demand at a much better price.”

The Baylor researchers said the mechanical properties of coconut fibers are just as good, if not better, than synthetic and polyester fibers when using them in automotive parts. Bradley said the coconut fibers are less expensive than other fibers and better for the environment because the coconut husks would have otherwise been thrown away. Coconuts also do not burn very well or give off toxic fumes, which is crucial in passing tests required for actual application in commercial automotive parts.

Bradley said they are working closely with a Texas-based fiber processing company that is a supplier of unwoven fiber mats to four major automotive companies.

The Baylor researchers are now putting the automotive parts that use coconut fiber through a series of certification tests to see if the fiber meets the necessary safety performance specifications.

About Baylor:

Chartered in 1845 by the Republic of Texas, Baylor University is the oldest, continually operating university in the state. Baylor’s 735-acre campus in Waco, Texas, is home to more than 14,500 students from all 50 states and 70 countries, who can choose from more than 140 undergraduate and 100 graduate programs through 11 academic units. Baylor, a private Christian university and a nationally ranked liberal arts institution, is classified by the Carnegie Foundation for the Advancement of Teaching as a research university with “high research activity.” This blends with Baylor’s international reputation for educational excellence built upon the faculty’s commitment to teaching, scholarship and interdisciplinary research to produce outstanding graduates.

Media Contact

Matt Pene Newswise Science News

More Information:

http://www.baylor.edu

All latest news from the category: Automotive Engineering

Automotive Engineering highlights issues related to automobile manufacturing – including vehicle parts and accessories – and the environmental impact and safety of automotive products, production facilities and manufacturing processes.

innovations-report offers stimulating reports and articles on a variety of topics ranging from automobile fuel cells, hybrid technologies, energy saving vehicles and carbon particle filters to engine and brake technologies, driving safety and assistance systems.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors