Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST measures performance of auto crash warning systems

Engineers at the National Institute of Standards and Technology (NIST) have developed and tested a laser-based ranging system to assess the performance of automobile collision warning systems.

Researchers in industry and at the U.S. Department of Transportation (DOT) will be able to use the NIST technology to accelerate the development and commercialization of safety systems that alert drivers to multiple, and sometimes virtually simultaneous potential crash hazards—both from forward or side collisions as well as from running off the road. DOT believes that such warning systems could reduce substantially the number and severity of injuries to motorists and save lives.

Preliminary tests of prototype collision detection systems with the NIST technology have revealed both potential benefits of the systems and areas that need improvement.

According to DOT, of the 3.6 million rear-end, road departure and lane change crashes that occur each year in the United States, 27,500 result in one or more fatalities—about three-quarters of the nation’s yearly auto-related deaths. DOT estimates that widespread deployment of advanced integrated driver assistance systems may reduce such collisions by 48 percent. The department has formed a partnership with the automobile industry called the Integrated Vehicle Based Safety Systems (IVBSS) initiative to hasten deployment of advanced warning systems in the U.S. vehicle fleet.

To evaluate the performance of crash warning systems, which generally use radar, researchers needed an accurate measurement tool based on entirely different principles. NIST researchers developed an independent measurement system (IMS) consisting of a camera and microphone in the cab to detect the driver warning, a suite of calibrated cameras to measure the distance to lane boundaries and laser scanners to measure the distance to obstacles forward and to the side of the vehicle. The system can be mounted on cars or trucks with trailers and requires no modifications or connections to the warning system being tested. The NIST system can detect an object to within about eight-tenths of a meter from up to 60 meters away at speeds up to 25 m/s (within 33 inches at a distance of 197 feet and speeds up to 56 mph.)

NIST used the IMS to evaluate the performance of two systems built by IVBSS industry partners for a light vehicle and a heavy truck. Researchers collected data in representative crash-imminent driving scenarios in which a crash warning should be issued as well as scenarios that might cause a system to issue a false alarm. Both systems passed most of the more than 30 tests conducted this fall in East Liberty, Ohio and Dundee, Mich. However, the IMS revealed some warning system problems in detecting whether forward vehicles were in-lane or out-of-lane on curves or during lane changes. The IMS also measured significant warning delays that resulted in test failures. Such problems are common in automotive crash warning systems that must operate in real-time, at highway speeds, and use multiple low-cost sensors to measure complex three-dimensional scenes.

DOT is currently analyzing the IMS data and if the results indicate the warning systems pass DOT muster, the next step calls for the IVBSS to equip approximately 20 automobiles and 10 trucks with the warning systems. Volunteer motorists and truckers would be asked to use vehicles on the highway for a month. The DOT will analyze the data to refine estimates of benefit if these systems are deployed in most vehicles.

John Blair | EurekAlert!
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>