Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SolarFox hits the halfway stage

25.10.2007
A team of staff and students from UCL (University College London) are competing in one of the world’s toughest engineering tests – the Panasonic World Solar Challenge. The biennial event sees teams build their own solar-powered cars and then race them over a gruelling 3000km course from Darwin to Adelaide.

An initial qualifying lap saw UCL’s ‘SolarFox’ placed 17th on a grid of 39 cars. The team maintained its position through the first day’s racing, clocking up an impressive 418km, and arrived at Alice Springs – the halfway point – earlier today in 10th place.

Led by Dr Richard Bucknall and Dr Konrad Ciaramella from UCL’s Department of Mechanical Engineering, the UCL team has been responsible for every aspect of the SolarFox’s design and manufacture. Much of the chassis and suspension components were fabricated and welded in the department’s workshop, with only items such as the wheels, tyres and seat bought off the peg.

The body was designed in-house using the latest computer software and was manufactured using fibreglass by a specialist firm, Fibreglass Applications. The UCL team then carried out the laborious task of attaching 402 solar cells to the car. The solar array will produce approximately 1300 Watts in bright sunlight, which is sufficient power for the vehicle to obtain speeds of up to 120km per hour.

The race, which attracts competitors from top universities and research organisations from throughout the world, tests technologies which may help provide the solution to one of today’s most pressing issues, explains Dr Ciaramella: “Exploiting renewable energy sources is vital in the fight against pollution and automobiles are the source of 30 per cent of the nation’s smog-forming nitrogen. Solar-powered cars could reduce or even eliminate the automotive industry’s contribution towards air pollution and while practical solar cars remain a long way off, the continuing development of solar racing cars moves this technology one step closer to reality.”

The race is scheduled to finish on Sunday, by which time the teams will have traversed some of Australia’s most remote and hostile environments, including Glendambo – population 30; annual rainfall 185mm.

David Weston | alfa
Further information:
http://www.teamsolarfox.com
http://www.wsc.org.au/

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>