Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New night-vision system reduces car accidents

28.09.2007
About 42% of fatal car accidents happen at night, according to the European Commission for the Automobile Industry. This figure is extremely worrying bearing in mind that there is about 60% less traffic during at night time.

This is largely due to the reduced visual acuity and field of vision at night as a consequence of the illumination from the headlights — these factors are currently being studied by a group of researchers from the Department of Computer Architecture and Technology [http://atc.ugr.es/] at the University of Granada [http://www.ugr.es].

This group created an electronic system that significantly improves driving ability at night by using information extracted automatically from night visors. Researchers are working within a European project called DRIVSCO, whose participants include researchers from different countries who work on real-time vision and its application to the car industry. The study conducted at UGR [http://www.ugr.es] developed a microchip which, when installed in a car, makes it easier to extract the information from cameras to elements involved in driving (bends, pedestrians, cars, etc.) which may be present on the road. In other words, this system will inform drivers by means of visual, acoustic or other signs about the obstacles appearing in their way, making intelligent cars even more sophisticated than is currently the case.

Improving visibility

The researcher who carried out this study is Eduardo Ros Vidal, who explained that the aim of this chip is to support the illumination of the car, which is insufficient for ideal vision. “Dipped headlights only illuminate about 56 meters when the breaking distance at 100 km/h is about 80 meters,” says Professor Ros Vidal. The system created by his group uses two infrared cameras placed on the car which record the scene even further than the illumination of conventional headlights. Therefore, the chip extracts information about factors such as movement or depth in real time to improve the detection of specific elements and situations of interest.

Current artificial vision systems use this basic information to detect objects, pedestrians, bends etc. For instance, the system generates information about the depth of the scene in real time codifying the distance of every object — warm colours for close objects (reddish and more dangerous) and cold colours for distant objects (bluish and safer). The system also processes real-time movements, indicating the direction in which the object moves in the scene and how everything changes due to the movement of the car.

Other participants in DRIVSCO include the University of Münster (Germany), which is currently studying where drivers look when driving by using eye-tracking systems. This project is the continuation of ECOVISION, which also focused on the development of Advanced Driving Assistant Systems (ADAS), which are currently applied to high range cars and which will undoubtedly be improved thanks to the progress of DRIVSCO.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>