Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New night-vision system reduces car accidents

28.09.2007
About 42% of fatal car accidents happen at night, according to the European Commission for the Automobile Industry. This figure is extremely worrying bearing in mind that there is about 60% less traffic during at night time.

This is largely due to the reduced visual acuity and field of vision at night as a consequence of the illumination from the headlights — these factors are currently being studied by a group of researchers from the Department of Computer Architecture and Technology [http://atc.ugr.es/] at the University of Granada [http://www.ugr.es].

This group created an electronic system that significantly improves driving ability at night by using information extracted automatically from night visors. Researchers are working within a European project called DRIVSCO, whose participants include researchers from different countries who work on real-time vision and its application to the car industry. The study conducted at UGR [http://www.ugr.es] developed a microchip which, when installed in a car, makes it easier to extract the information from cameras to elements involved in driving (bends, pedestrians, cars, etc.) which may be present on the road. In other words, this system will inform drivers by means of visual, acoustic or other signs about the obstacles appearing in their way, making intelligent cars even more sophisticated than is currently the case.

Improving visibility

The researcher who carried out this study is Eduardo Ros Vidal, who explained that the aim of this chip is to support the illumination of the car, which is insufficient for ideal vision. “Dipped headlights only illuminate about 56 meters when the breaking distance at 100 km/h is about 80 meters,” says Professor Ros Vidal. The system created by his group uses two infrared cameras placed on the car which record the scene even further than the illumination of conventional headlights. Therefore, the chip extracts information about factors such as movement or depth in real time to improve the detection of specific elements and situations of interest.

Current artificial vision systems use this basic information to detect objects, pedestrians, bends etc. For instance, the system generates information about the depth of the scene in real time codifying the distance of every object — warm colours for close objects (reddish and more dangerous) and cold colours for distant objects (bluish and safer). The system also processes real-time movements, indicating the direction in which the object moves in the scene and how everything changes due to the movement of the car.

Other participants in DRIVSCO include the University of Münster (Germany), which is currently studying where drivers look when driving by using eye-tracking systems. This project is the continuation of ECOVISION, which also focused on the development of Advanced Driving Assistant Systems (ADAS), which are currently applied to high range cars and which will undoubtedly be improved thanks to the progress of DRIVSCO.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>