Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

See what you’re spewing as you speed along

06.08.2007
Device in exhaust could allow drivers to monitor emissions

In future drivers may only have to glance at the dashboard to see the pollution spewing out of their vehicle’s exhausts.

A team from The University of Manchester has constructed a laser measuring device capable of recording levels of carbon dioxide, carbon monoxide and methane from directly inside an exhaust.

Once optimised, the process could be incorporated into onboard diagnostic systems that would monitor emissions as vehicles drive along – and potentially help people reduce their emissions by adjusting their driving style.

Reporting in the Optical Society of America’s journal Applied Optics, academics claim this approach is faster and more sensitive than the extractive techniques normally used to monitor emissions.

In an MOT test, for example, exhaust emissions are extracted into a box while the engine is idling and the gases present are then measured.

The University of Manchester team employed a device known as a ‘near-IR diode laser sensor’ to measure the variation in gas concentration during changes in the operating conditions of a Rover engine, such as increasing and decreasing the throttle, adjusting the air to fuel ratio, and start-up.

“This is the first instance of this type of near-IR diode laser sensor being used directly in the exhaust of a static internal combustion engine to measure emissions,” said Dr Philip Martin, one of the paper’s authors.

The team say the components for the device are readily available and the near-IR technology allows highly accurate readings to be taken and also cuts out interference.

In the studies reported in Applied Optics, the near-IR device used two diode lasers operating at different frequencies; one detecting carbon monoxide and carbon dioxide and the other detecting methane.

The team measured the emissions produced by a Rover K-series car engine mounted on a test bed – but they have also taken the process outside the laboratory and measured exhaust emissions in passing vehicles.

“Components handling the high sensitivity and robustness required to apply this approach in the real world are only now becoming available,” added Dr Martin. “We have already constructed a battery-powered roadside unit using the same technology, employing rugged and robust telecommunications components.”

The next steps will be to fully quantify the technique and add additional lasers for other key emissions such as nitrogen oxide, nitrogen dioxide and specific hydrocarbons.

Dr Martin, who is a co-founder of University spin-out company TDL Sensors, says the technology could also potentially be used in roadside congestion charging systems, with less polluting vehicles being charged less.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>