Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

See what you’re spewing as you speed along

06.08.2007
Device in exhaust could allow drivers to monitor emissions

In future drivers may only have to glance at the dashboard to see the pollution spewing out of their vehicle’s exhausts.

A team from The University of Manchester has constructed a laser measuring device capable of recording levels of carbon dioxide, carbon monoxide and methane from directly inside an exhaust.

Once optimised, the process could be incorporated into onboard diagnostic systems that would monitor emissions as vehicles drive along – and potentially help people reduce their emissions by adjusting their driving style.

Reporting in the Optical Society of America’s journal Applied Optics, academics claim this approach is faster and more sensitive than the extractive techniques normally used to monitor emissions.

In an MOT test, for example, exhaust emissions are extracted into a box while the engine is idling and the gases present are then measured.

The University of Manchester team employed a device known as a ‘near-IR diode laser sensor’ to measure the variation in gas concentration during changes in the operating conditions of a Rover engine, such as increasing and decreasing the throttle, adjusting the air to fuel ratio, and start-up.

“This is the first instance of this type of near-IR diode laser sensor being used directly in the exhaust of a static internal combustion engine to measure emissions,” said Dr Philip Martin, one of the paper’s authors.

The team say the components for the device are readily available and the near-IR technology allows highly accurate readings to be taken and also cuts out interference.

In the studies reported in Applied Optics, the near-IR device used two diode lasers operating at different frequencies; one detecting carbon monoxide and carbon dioxide and the other detecting methane.

The team measured the emissions produced by a Rover K-series car engine mounted on a test bed – but they have also taken the process outside the laboratory and measured exhaust emissions in passing vehicles.

“Components handling the high sensitivity and robustness required to apply this approach in the real world are only now becoming available,” added Dr Martin. “We have already constructed a battery-powered roadside unit using the same technology, employing rugged and robust telecommunications components.”

The next steps will be to fully quantify the technique and add additional lasers for other key emissions such as nitrogen oxide, nitrogen dioxide and specific hydrocarbons.

Dr Martin, who is a co-founder of University spin-out company TDL Sensors, says the technology could also potentially be used in roadside congestion charging systems, with less polluting vehicles being charged less.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>