Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Portsmouth scientists reinvent the wheel

11.06.2007
Scientists at the University of Portsmouth are using the latest breakthroughs in artificial intelligence to develop the world's first thinking car wheel.

The 'smart' wheel is being developed under a £200K Department of Trade and Industry-funded Knowledge Transfer Partnership (KTP) project with Hampshire-based company PML Flightlink Ltd.

University scientists are providing the artificial intelligence systems for the wheels on the company's prototype eco-friendly electric super-car. The wheels use microcomputers to perform 4000 calculations per second and 'talk' to each other. The wheels use AI to think and learn as the car is being driven, making calculations and adjustments according to travelling speed and road conditions.

It is the first time artificial intelligence has replaced fundamental mechanics within a motor vehicle and will mean tighter control, a smoother ride and a safer drive, yet the driver remains in control of the car.

"Conventional wisdom says you can't reinvent the wheel. We have done just that. We have taken the wheel, given it brains and the ability to think and learn. It's a huge breakthrough," said Dr David Brown of the University of Portsmouth's Institute of Industrial Research.

Artificial Intelligence controls the suspension, steering and breaking systems, teaching it to adapt to bends in the road, potholes and other potential hazards, and compensating by adjusting the car's reactions. The information is retained in the computer’s memory and used the next time the car encounters similar road conditions. The car is learning as it drives and adapting its performance accordingly.

Dr Brown said: "Traditional suspension means the vehicle dips when the wheels detect poor road surfaces and you get a bumpy ride, while a tight corner means the drag will slow the vehicle down. Electronic traction control and suspension will counterbalance this kind of drop and drag effect but the driver won’t even know it’s there. It means a faster car but a safer one."

He added: "The next generation of vehicles have the potential to be fully autonomous, but where’s the fun in that? People get pleasure from driving and they will always want the freedom to drive how and where they please."

PML Flightlink designs specialist electronic motors and its electronic vehicle prototype has already received rave reviews at international motoring trade exhibitions.

The company has successfully converted a Mini into an electric vehicle (EV) with four direct-drive wheels, each with an electronic hub motor of 160 break-horse-power. This combined 640 bhp allows for an acceleration of 0-60mph in 4.5 seconds and a top speed of 150 mph (240 kph).

"It will out-perform a Porsche backwards," PML spokesman, Chris Newman said.

A small 250cc petrol engine charges the car’s battery while the car is being driven. In this mode it will run for up to 900 miles before needing to re-fuel, while in pure EV mode it will run for 200 miles. Previous electric models barely managed 60 mph (100kph) and had a range of less than 100 miles.

Mr Newman said: "Today’s electronic technology means that the old idea of an electric car is simply blown out of the water. With a performance of 80-100 mile-per-gallon compared with 40mpg with today’s average car it’s cheap to run and with hardly any mechanical parts, it will also be cheaper to maintain. In EV mode there are zero emissions, which means it’s very eco-friendly. It’s a car for the 21st Century."

The company projects that by the year 2012, 25 per cent of cars in production will be EVs or hybrids.

Lisa Egan | alfa
Further information:
http://www.port.ac.uk

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>