Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checking automotive surface quality

09.05.2007
Research stemming from recent EUREKA project E! 2373 SURFAS hopes to contribute to the increased use of Sheet Moulding Compound (SMC) composites in the automotive industry.

SMCs are a cost-effective and lighter alternative to metals and more resistant to corrosion. They not only help make nicer cars, but most importantly, lighter ones – reducing fuel consumption, carbon dioxide and other greenhouse gas emissions. Together with improved engine systems, these materials can contribute to meeting EU regulations concerning emissions, and to reducing the impact of modern transport on the environment.

“These composites are starting to be used more widely as a replacement for steel in automotive body panel applications,” says Véronique Michaud from main project participant the Polymer and Composite Technology Laboratory in Lausanne. “They suffer, however, from major drawbacks in terms of reliability, of surface appearance and performance. Simply stated, it is extremely difficult to obtain, in a reliable manner, a surface quality that matches that of steel, especially after the painting operation.”

The goal of the SURFAS project was to investigate problems of surface quality in SMC composites. Partners identified the presence of surface craters or pits on composite parts. “At that point, nobody knew why these craters appeared,” explains Michaud, “so a main goal was to understand what was happening, at all stages of the process, from fibre production and the deposition of the sizing layer to compounding of the composite pre-product, up to the final processing of the part. From there we hoped to make proposals on how to modify either the base material or the process to better control surface quality.” The project delivered an array of important scientific results. Partners gained a better understanding of the role of fibre sizing and over-sizing on the fibre assembly surface and how parameters such as energy, permeability and rigidity, affect final product quality. They also investigated the exact mechanisms of the so-called ‘low profile effect’, where a blend of thermoplastic and thermoset resin is used to improve the final surface quality.

Dr. Michel Arpin works for SURFAS industrial partner Vetrotex International and says the project was an excellent opportunity to investigate a technical issue from a more scientific perspective. “The direct outcome for our company is two-fold,” he says. ”First, we are now better armed to develop new products in this or similar domains of application, thanks to all the technical knowledge that we gained. This project has helped us to point out clearly how complex the materials-process-performance interaction is with this type of composite material.”

“EUREKA gave us the opportunity to cooperate on a European level,” adds Michaud, “without the heavy administrative constraints of a typical European project. All partners could deal with their local funding agencies, with whom they were already familiar and who reacted quickly and remained closely involved in project progress.”

Sally Horspool | alfa
Further information:
http://www.eureka.be/surfas

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>