Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checking automotive surface quality

09.05.2007
Research stemming from recent EUREKA project E! 2373 SURFAS hopes to contribute to the increased use of Sheet Moulding Compound (SMC) composites in the automotive industry.

SMCs are a cost-effective and lighter alternative to metals and more resistant to corrosion. They not only help make nicer cars, but most importantly, lighter ones – reducing fuel consumption, carbon dioxide and other greenhouse gas emissions. Together with improved engine systems, these materials can contribute to meeting EU regulations concerning emissions, and to reducing the impact of modern transport on the environment.

“These composites are starting to be used more widely as a replacement for steel in automotive body panel applications,” says Véronique Michaud from main project participant the Polymer and Composite Technology Laboratory in Lausanne. “They suffer, however, from major drawbacks in terms of reliability, of surface appearance and performance. Simply stated, it is extremely difficult to obtain, in a reliable manner, a surface quality that matches that of steel, especially after the painting operation.”

The goal of the SURFAS project was to investigate problems of surface quality in SMC composites. Partners identified the presence of surface craters or pits on composite parts. “At that point, nobody knew why these craters appeared,” explains Michaud, “so a main goal was to understand what was happening, at all stages of the process, from fibre production and the deposition of the sizing layer to compounding of the composite pre-product, up to the final processing of the part. From there we hoped to make proposals on how to modify either the base material or the process to better control surface quality.” The project delivered an array of important scientific results. Partners gained a better understanding of the role of fibre sizing and over-sizing on the fibre assembly surface and how parameters such as energy, permeability and rigidity, affect final product quality. They also investigated the exact mechanisms of the so-called ‘low profile effect’, where a blend of thermoplastic and thermoset resin is used to improve the final surface quality.

Dr. Michel Arpin works for SURFAS industrial partner Vetrotex International and says the project was an excellent opportunity to investigate a technical issue from a more scientific perspective. “The direct outcome for our company is two-fold,” he says. ”First, we are now better armed to develop new products in this or similar domains of application, thanks to all the technical knowledge that we gained. This project has helped us to point out clearly how complex the materials-process-performance interaction is with this type of composite material.”

“EUREKA gave us the opportunity to cooperate on a European level,” adds Michaud, “without the heavy administrative constraints of a typical European project. All partners could deal with their local funding agencies, with whom they were already familiar and who reacted quickly and remained closely involved in project progress.”

Sally Horspool | alfa
Further information:
http://www.eureka.be/surfas

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>