Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop intelligent, driverless car

21.03.2007
If you thought intelligent cars capable of negotiating a city centre with no driver behind the wheel were just the dream of Hollywood film writers you could be wrong. Researchers at the University of Essex think their work developing an autonomous model car could pave the way for intelligent driverless cars.

The project, led by Dr Simon Lucas of the Department of Computer Science, will see researchers build an autonomous model car which will be tested on a race track at the Colchester campus during the summer. It will provide a prototype for researchers around the world to develop their own smart model cars.

Dr Lucas explained: ‘This project will push computational intelligence methods to their limits, and beyond. As far as we are aware, this is the first time a completely autonomous model car has been developed. Similar principles have been applied to full-size cars in the past - for instance in the DARPA challenge to navigate across the Mohave Desert - but the cost implications of developing the technology using real cars mean it just isn’t viable for most researchers. By using model cars, we will be able investigate the possibilities of the technology far easier and more cheaply.’

The intelligent model car will be built using a standard remote control model vehicle. A PC will be mounted on the chassis and a video camera, streaming real-time computer vision, along with other sensors will be added. The software written for the PC will allow the car to be fully autonomous; it will be able to recognise obstacles and make tactical decisions as it drives itself around the racetrack.

The Essex prototype will allow researchers across the globe to build their own autonomous cars which will race against one another at the IEEE (Institute of Electrical and Electronics Engineers) World Congress on Computational Intelligence to be held in Hong Kong in 2008.

Dr Lucas said: ‘The race in 2008 will be about whose car is the fastest but also the smartest. The challenge is to use computer vision methods together with a range of other sensor data to race the car as fast as possible around the track while outwitting the opponent cars but to do so it needs to be smart, it needs adapt to the behaviour of the other cars as it drives.’

He added: ‘We envisage that the technology needed to develop our prototype could pave the way for a future where driverless cars are a reality. It is entirely possible that in the next 15 years we could see driverless cars being used in cities around the world, probably for specific transportation needs such as taxis or delivery vehicles. The potential real-world applications of the computer vision technology that we will develop are endless.’

The development of the Essex prototype model car is being funded by the IEEE Computational Intelligence Society.

Kate Clayton | alfa
Further information:
http://www.essex.ac.uk/news

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>