Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invention could solve “bottleneck” in developing pollution-free cars

04.12.2006
Hydrogen-powered cars that do not pollute the environment are a step closer thanks to a new discovery which promises to solve the main problem holding back the technology.

Whilst hydrogen is thought to be an ideal fuel for vehicles, producing only water on combustion, its widespread use has been limited by the lack of a safe, efficient system for onboard storage.

Scientists have experimented with ways of storing hydrogen by locking the gas into metal lattices, but metal hydrides only work at temperatures above 300°C and metal organic framework materials only work at liquid nitrogen temperatures (-198°C).

Now scientists at the University of Bath have invented a material which stores and releases hydrogen at room temperature, at the flick of a switch, and promises to help make hydrogen power a viable clean technology for the future.

Although its fuel to weight ratio is insufficient to make an entire hydrogen tank from it, the material could be used in combination with metal hydride sources to store and release energy instantaneously whilst the main tank reaches sufficient temperature, 300°C, to work.

They hope to have the fully-working prototype ready within two to three years.

“The problem of how to store hydrogen has been a major bottleneck in the development of the hydrogen power technology,” said Dr Andrew Weller from the Department of Chemistry at the University of Bath (UK).

“Hydrogen has a low density and it only condenses into liquid form at -252°C so it is difficult to use conventional storage systems such as high-pressure gas containers which would need steel walls at least three inches thick, making them too heavy and too large for cars.

“The US Department of the Energy has said that it wants six per cent of the weight of hydrogen storage systems to be hydrogen in order to give new hydrogen powered cars the same kind of mileage per tank of fuel as petrol-based systems.

“Whilst metal hydrides and metal organic framework materials can achieve this kind of ratio, they only work at extremes of temperature which are difficult to engineer into an ordinary vehicle.

“Our new material works at room temperature and at atmospheric pressure at the flick of a switch. Because it is made from a heavy metal (Rhodium), its weight to fuel ratio is low, 0.1 per cent, but it could certainly fill the time lag between a driver putting their foot on the accelerator and a metal hydride fuel tank getting up to temperature.

“We are really very excited about the potential this technology offers.”

The University of Bath researchers made the discovery whilst investigating the effect that hydrogen has on metals. Having constructed an organo-metallic compound containing six rhodium (a type of metal that is also currently found in catalytic converters in cars) atoms and 12 hydrogen atoms, they began studying the chemical properties of the complex with researchers in Oxford (UK) and Victoria (Canada).

They soon realised that the material would absorb two molecules of hydrogen at room temperature and atmospheric pressure – and would release the molecules when a small electric current was applied to the material.

This kind of take up and release at the atomic scale makes the material an ideal candidate for solving the hydrogen storage problem.

The researchers are now looking at ways of printing the material onto sheets that could be stacked together and encased to form a storage tank.

Potentially this tank could sit alongside a metal hydride tank and would kick into action as soon as the driver put their foot on the accelerator, giving the metal hydride store the time to heat up to 300°C - the temperature that normal petrol-powered engines run at.

“With the growing concern over climate change and our over-reliance on fossil fuels, hydrogen provides us with a useful alternative,” said Dr Weller.

“We have been able to use hydrogen to power fuel cells, which combine hydrogen and oxygen to form electricity and energy, for a number of years.

“But whenever the fuel is considered for cars we hit the stumbling block of how to store hydrogen gas in everyday applications.

“The new material absorbs the hydrogen into its structure and literally bristles with molecules of the gas. At the flick of a switch it rejects the hydrogen, allowing us to turn the supply of the gas on and off as we wish.

“The fact that we discovered the material by chance is a fantastic advertisement for the benefits of curiosity driven research.

“In principle it should be possible to produce ready amounts of hydrogen using sea water and solar cells, giving the next generation of vehicles an inexhaustible supply of environmentally-friendly fuel.

“In fact other research in Bath’s Department of Chemistry is at the forefront of the solar cell research, new battery technologies and new fuel cell technologies which could help unlock what many people are calling the hydrogen economy.

The research was initially funded by the Engineering & Physical Sciences Research Council.

The researchers are now working on the first stages of the prototype, which involves printing the material onto a glass substrate. A further £500,000 grant to the Department of Chemistry has enabled Weller along with other researchers in the Department to buy two mass spectrometers which allows them to examine the molecular structure of the material.

It was published in the scientific journal Angewandte Chemie in August 2006, and reviewed by Nature in September 2006. Copies of both articles are available from the University of Bath press office.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/news/articles/releases/hydrogen041206.html

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>