Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invention could solve “bottleneck” in developing pollution-free cars

04.12.2006
Hydrogen-powered cars that do not pollute the environment are a step closer thanks to a new discovery which promises to solve the main problem holding back the technology.

Whilst hydrogen is thought to be an ideal fuel for vehicles, producing only water on combustion, its widespread use has been limited by the lack of a safe, efficient system for onboard storage.

Scientists have experimented with ways of storing hydrogen by locking the gas into metal lattices, but metal hydrides only work at temperatures above 300°C and metal organic framework materials only work at liquid nitrogen temperatures (-198°C).

Now scientists at the University of Bath have invented a material which stores and releases hydrogen at room temperature, at the flick of a switch, and promises to help make hydrogen power a viable clean technology for the future.

Although its fuel to weight ratio is insufficient to make an entire hydrogen tank from it, the material could be used in combination with metal hydride sources to store and release energy instantaneously whilst the main tank reaches sufficient temperature, 300°C, to work.

They hope to have the fully-working prototype ready within two to three years.

“The problem of how to store hydrogen has been a major bottleneck in the development of the hydrogen power technology,” said Dr Andrew Weller from the Department of Chemistry at the University of Bath (UK).

“Hydrogen has a low density and it only condenses into liquid form at -252°C so it is difficult to use conventional storage systems such as high-pressure gas containers which would need steel walls at least three inches thick, making them too heavy and too large for cars.

“The US Department of the Energy has said that it wants six per cent of the weight of hydrogen storage systems to be hydrogen in order to give new hydrogen powered cars the same kind of mileage per tank of fuel as petrol-based systems.

“Whilst metal hydrides and metal organic framework materials can achieve this kind of ratio, they only work at extremes of temperature which are difficult to engineer into an ordinary vehicle.

“Our new material works at room temperature and at atmospheric pressure at the flick of a switch. Because it is made from a heavy metal (Rhodium), its weight to fuel ratio is low, 0.1 per cent, but it could certainly fill the time lag between a driver putting their foot on the accelerator and a metal hydride fuel tank getting up to temperature.

“We are really very excited about the potential this technology offers.”

The University of Bath researchers made the discovery whilst investigating the effect that hydrogen has on metals. Having constructed an organo-metallic compound containing six rhodium (a type of metal that is also currently found in catalytic converters in cars) atoms and 12 hydrogen atoms, they began studying the chemical properties of the complex with researchers in Oxford (UK) and Victoria (Canada).

They soon realised that the material would absorb two molecules of hydrogen at room temperature and atmospheric pressure – and would release the molecules when a small electric current was applied to the material.

This kind of take up and release at the atomic scale makes the material an ideal candidate for solving the hydrogen storage problem.

The researchers are now looking at ways of printing the material onto sheets that could be stacked together and encased to form a storage tank.

Potentially this tank could sit alongside a metal hydride tank and would kick into action as soon as the driver put their foot on the accelerator, giving the metal hydride store the time to heat up to 300°C - the temperature that normal petrol-powered engines run at.

“With the growing concern over climate change and our over-reliance on fossil fuels, hydrogen provides us with a useful alternative,” said Dr Weller.

“We have been able to use hydrogen to power fuel cells, which combine hydrogen and oxygen to form electricity and energy, for a number of years.

“But whenever the fuel is considered for cars we hit the stumbling block of how to store hydrogen gas in everyday applications.

“The new material absorbs the hydrogen into its structure and literally bristles with molecules of the gas. At the flick of a switch it rejects the hydrogen, allowing us to turn the supply of the gas on and off as we wish.

“The fact that we discovered the material by chance is a fantastic advertisement for the benefits of curiosity driven research.

“In principle it should be possible to produce ready amounts of hydrogen using sea water and solar cells, giving the next generation of vehicles an inexhaustible supply of environmentally-friendly fuel.

“In fact other research in Bath’s Department of Chemistry is at the forefront of the solar cell research, new battery technologies and new fuel cell technologies which could help unlock what many people are calling the hydrogen economy.

The research was initially funded by the Engineering & Physical Sciences Research Council.

The researchers are now working on the first stages of the prototype, which involves printing the material onto a glass substrate. A further £500,000 grant to the Department of Chemistry has enabled Weller along with other researchers in the Department to buy two mass spectrometers which allows them to examine the molecular structure of the material.

It was published in the scientific journal Angewandte Chemie in August 2006, and reviewed by Nature in September 2006. Copies of both articles are available from the University of Bath press office.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/news/articles/releases/hydrogen041206.html

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>