Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research could ‘sense’ car crashes more accurately

A new research project aims to produce higher performance inertial sensors which could detect potential car accidents more accurately than any currently available.

Dr Michael Kraft and his team at the University of Southampton’s School of Electronics & Computer Science (ECS) are working with a Belgian company, Melexis, to develop innovative control and interface systems to improve the performance of existing micromachined sensors.

In this three-year research project, Melexis, a growing Belgium-based company, which produces integrated semiconductor device systems for use in the automotive market, has supplied micromachined accelerometers (a device for measuring acceleration) so that the team can assess and improve its performance using their interface and control circuits

‘There is a huge, just recently emerging demand for higher performance inertial sensors for intelligent automotive systems and many others,’ commented Dr Kraft. ‘Six to eight airbags are standard already; they need to be deployed by accelerometers that accurately sense the impact of a crash.’

According to Dr Kraft existing commercial accelerometers may not meet these increasing performance specifications. His research programme will take the Melexis accelerometer and use advanced electronics and control engineering to make it better, more versatile and easier to integrate at a system level.

‘This research suggests a radically different approach to improve the performance of these sensors, namely to work on the electronic interface and control systems aspects of these sensors, rather than the microfabricated sensing elements themselves,’ said Dr Kraft.

The prime beneficiaries of this research will be companies supplying sensors for automotive safety systems. Other applications such as for GPS (Global Positioning System) back-up systems, virtual reality systems, inertial navigation and guidance, and seismology, also require sensors with very high specification characteristics.

‘Little research has been done in this field, yet there is huge potential to make a real impact,’ said Dr Kraft. ‘With this approach it should be possible to develop a very versatile interface chip that can be used with a range of micromachined sensors.’

Helene Murphy | alfa
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>