Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lane departure warning systems help drowsy drivers avoid crashes

17.10.2006
Four driver warning systems that may help those who fall asleep at the wheel were recently tested and evaluated by human factors/ergonomics (HF/E) researchers at Ford Motor Company.

Called Lane Departure Warnings (LDW), these systems are designed to help reduce car crashes by alerting drowsy drivers that the vehicle has wandered out of the lane. The researchers will present their results on Thursday, October 19, 2006, during the HFES 50th Annual Meeting at the Hilton San Francisco Hotel, which takes place October 16–20.

National Highway Transportation Safety Administration data from 2002 indicate that about 1500 fatalities have occurred in recent years from about 100,000 crashes in which driver drowsiness was a factor. Effective LDW systems can reduce that number. The question is, what makes an effective LDW?

The warning systems tested rely on the detection of the vehicle's position in relation to the road lane markings with the help of a small camera mounted on the vehicle. In the study, if a driver departed out of a lane, one or a combination of the four warning systems would activate: steering wheel torque that communicated to the driver the appropriate steering wheel angle needed to return to the lane, a rumble strip sound recording, steering wheel vibration, or a row of flashing red LEDs on top of the instrument panel.

Participants used Ford's VIRtual Test Track Experiment, a hydraulically powered moving-base simulator, to "drive" a 2000 Volvo S80. They had not slept for 23 hours, and their drowsiness was assessed by, among other things, a physiological measure of eye closure. Participants drove for three hours, during which they experienced both forced and driver-initiated lane departures.

All four warning systems cut drivers' reaction time almost in half. The steering wheel vibration warning in combination with the steering wheel torque proved to be the most effective. When drivers noticed one of the warning systems, they provided feedback about whether it was helpful, intuitive, and acceptable.

As a result of this study, the HF/E researchers have gained knowledge of how to design an effective LDW system in the effort to prevent car crashes and fatalities caused by drowsy drivers.

Lois Smith | EurekAlert!
Further information:
http://www.hfes.org

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>