Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype for innovative one-metre wide vehicle is developed

26.04.2006
The prototype of a revolutionary new type of vehicle only one metre wide specially designed for cities has been developed by a team of European scientists. The vehicle combines the safety of a micro-car and the manoeuvrability of a motorbike, while being more fuel-efficient and less polluting than other vehicles.

The CLEVER (Compact Low Emission Vehicle for Urban Transport) vehicle is a £1.5 million collaborative project which has involved nine European partners from industry and research, including the University of Bath.

The three-year international project has produced a tilting three-wheeled vehicle that is fully enclosed and has seats for the driver and a passenger. Its strengthened frame protects the driver in a crash and the vehicle has a top speed of approximately 60 mph (about 100 kph) and an acceleration of 0-40 mph (60 kph) in seven seconds.

At just over three feet (1 metre) wide, it is 20 inches (0.5 metres) narrower than a micro-car, and three feet narrower than a medium sized conventional car. This reduced width means more efficient parking bays, and the possibility of narrower lanes for such vehicles.

The vehicle is different from previous attempts to create a small urban vehicle in that it is fully enclosed in a metal framework, is stylishly designed and is much safer. Its roof is as high as conventional cars, and it carries one passenger, who sits behind the driver.

German, French, British and Austrian organisations, including BMW, began work on the project in December 2002 completed it in March this year. It is funded by the European Union. The car was launched at the University of Bath.

Partners include: the Technische Universitaet Berlin in Berlin, the Institut Francais Du Petrole in Vernaison near Lyon, and the Institut Fuer Verkehrswesen – Universitaet Fuer Bodenkultur, in Vienna.

Matt Barker and Ben Drew, research officers at the University of Bath’s Centre for Power Transmission and Motion Control, developed a novel tilting chassis concept to keep the vehicle stable in corners. The vehicle controls the amount of tilt automatically, unlike on a motorcycle where the rider controls how far to tilt the vehicle.

The hydraulic active tilt system is electronically controlled to keep the vehicle balanced at all speeds while maintaining car-like steering throughout. The vehicle has an aluminium frame and plastic body work.

The work at Bath focused on the design and simulation of the vehicle chassis and control of the hydraulic tilting system. Cooper-Avon Tyres Ltd worked with the University of Bath to achieve these goals.

Running on compressed natural gas, the vehicle would not only help preserve stocks of oil but would emit about a third of the carbon dioxide than conventional family cars. Because it does not run on petrol or diesel, it would not be liable for the congestion charge in London, or any other city where the charge is likely to be adopted. Its fuel consumption is equivalent to 108 miles per gallon (or 2.6 litres per 100 kms) with petrol, a third of most cars.

"The CLEVER vehicle is a tremendous leap forward in the development of vehicles for the 21st century," said Dr Jos Darling, senior lecturer in Mechanical Engineering at the University of Bath, who is in charge of its part of the project, with Dr Geraint Owen.

"Making our vehicles smaller is a good solution to the relentless increase in traffic in our towns and cities. The advent of micro cars was a first step, but with its manoeuvrability and narrowness, the CLEVER vehicle is the ultimate in the search for a small vehicle to get around cities like Bath and London.

"The fact that it has a stylish design, can carry a passenger, is not open to the weather and is as high as a conventional car, will mean it will be much more popular with motorists than previous novel city vehicles.

"It costs less to run, is quieter and is less polluting, and this will make it popular with environmentalists. Its strengthened safety frame makes it very safe for the driver in accidents.

"We think the CLEVER vehicle is the way forward in city motoring and are proud that the University of Bath is at the heart of a European project to bring it about."

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk/news/articles/releases/clever-car250406.html

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>