Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sensor provides detailed data about vehicle particulate emissions

21.03.2006
Particulate emissions from diesel engines are currently measured by smoke darkness in motor vehicle inspections. This method is particularly unsuitable for measurement of the smallest particles, which are considered as being the most dangerous. There are over 100,000 vehicle inspection stations in Europe using smoke darkness to measure particulate emissions.

The authorities have noticed the shortcomings in measuring diesel smoke in this way and have been fervently seeking new methods that would not only satisfy numerous inspection station needs at a reasonable cost, but also be sensitive enough to the emissions of new diesel engines and engines fitted with a particle filter.

Finnish company Dekati Oy has developed a new sensor-based instrument to measure particulate emissions from vehicles. Tekes, the Finnish Funding Agency for Technology and Innovation, has partly funded Dekati’s research into particle measurement technology for a number of years.

"The AutoTest instrument will be launched during this year. The instrument features a sensor to enable the measurement of vehicle particulate emissions during vehicle inspections," says Dekati Oy’s CEO Juha Tikkanen.

Cheaper using sensor technology

"The cost of an individual instrument falls sharply with sensor technology. On the other hand, there is also a sharp rise in the number of instruments sold."

Demand is expected for measuring instruments since the measurement of vehicle particulate emissions in vehicle inspections will start in 2007 in the USA, in 2008 in Japan and possibly in the EU in 2012. The potential need on these markets alone is for 80,000 perhaps even for 200,000 measuring instruments.

Dekati has signed an R&D contract to develop AutoTest with a US company in a bid to also commercialise the instrument.

The sensor also has other applications such as in industrial hygiene, where the arrival of nanomaterials in the everyday working environment constitutes a major health risk for persons handling the materials. It is possible to develop the sensor into a vehicle-specific sensor that can be fitted in every diesel-driven vehicle.

Eeva Ahola | alfa
Further information:
http://www.tekes.fi/fine

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>