Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting pedestrian safety in the driving seat

13.01.2006
Every year in the European Union there are over 9,000 deaths and 200,000 injured victims in road accidents in which pedestrians and cyclists collide with a car. Hoping to improve on these grim statistics, is a cutting-edge sensing system that could ultimately help to save the lives of vulnerable road users (VRUs).

“The concept is relatively straightforward,” explains Dr Marc-Michael Meinecke of Volkswagen, one of the chief partners in the SAVE-U project along with DaimlerChrysler, Mira and Siemens VDO Automotive. “SAVE-U combines sensors such as radar, vision and infrared camera, as well as sensor fusion and actuators to increase safety for pedestrians. The main idea is that the sensors will recognise pedestrians and if a pedestrian has a high probability to collide with the vehicle then automatic braking will be initiated by the system.”

The project set out to develop an innovative pre-impact sensing platform that operates three different technologies of sensors simultaneously, and then fuses their data to protect cyclists and pedestrians under different weather and light conditions. The system comprises a radar network composed of several 24 GHz sensors working in parallel and an imaging system composed of passive infrared and colour video cameras.

A prototype vehicle incorporating the new system has been successfully tested in the United Kingdom. Installed on the car are two cameras – one video and one infrared – as well as the radar device. The system calculates in a matter of seconds the movement of pedestrians within the ‘capture zone’, which can be anything up to 30 metres away from the vehicle. From that point on, the car’s onboard cameras tracks the pedestrians’ movements and this information is correlated with data received from the radar network (such as distance to objects and their speed). SAVE-U can thus identify any pedestrian or cyclist coming within the trajectory of the vehicle and after analysing the situation, warn the driver or apply automatic braking if there is a risk of collision.

The partners opted to tackle the problem of protecting cyclists and pedestrians in three distinct stages: detection of VRUs at sufficient distance covering a relevant set of scenarios; definition and implementation of driver warning and vehicle control strategies to avoid, or at least minimise, the impact of a crash; and defining vehicle-mounted VRU protection strategies in case the crash cannot be avoided.

“Accident statistics from Volkswagen Accident Research in cooperation with the Medical University of Hanover were analysed,” says Dr Meinecke. “One of the main outcomes of the analysis was the conclusion that active hood concepts, external airbags, automatic braking systems, night vision, and other actuators seem to be very sufficient measure to lower the injury level of pedestrians. Within the SAVE-U demonstrator vehicles mainly automatic braking measures are implemented.”

Major advances were made in areas such as object tracking to obtain a robust trajectory, and the development of a deployment algorithm to be able to activate the automatic brakes without false alarms. Aspects of cost reduction and the reduction of sensor size benefited from the close teamwork, says Dr Meinecke.

In August, the project culminated with a special workshop in the United Kingdom showcasing the technology developed over the previous three years. The workshop featured samples of radar sensors and passive infrared video camera integral to the system, as well as demonstrations of the technology in action using two test vehicles (Mercedes E Class and Volkswagen Passat) equipped with the sensing platform, driver warning and vehicle control systems.

While there is clearly a strong demand for such technology to be implemented in vehicles as soon as possible, there is still a long road ahead before the SAVE-U innovations become standard.

“For a start, the sensors have to be shrunk further in size and price to enable them to be integrated in serial cars. The sensor costs will also have to be decreased dramatically to have a chance to make the systems cost effective. And, last but not least, the software components are still not fulfilling the requirements for serial production. I think in the area of pedestrian protection these pedestrian recognition systems will be the main focus of research activities in coming years,” he says.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/ID/80033/BrowsingType/Features
http://www.save-u.org
http://istresults.cordis.lu/

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>