Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaner diesel sensing a lucrative market

19.09.2005


An ambitious EU project created new pollution sensors for the automotive industry that could enable a multibillion euro market in emission control systems by 2010. The sensors will also help Europe to meet its CO2 obligations under the Kyoto Protocol.



The IMITEC project developed an emission control system for light duty diesel vehicles. Diesel powered vehicles are increasingly becoming a major part of the European market and already occupy more than 50 per cent of the car fleet in several European countries such as France.

During its research IMITEC scored a remarkable number of firsts. "I think when we started the project it was considered highly ambitious, but we have met out targets and we now have several technologies that will be commercialised," says Dr Athanasios G. Konstandopoulos, project coordinator and director of the Aerosol and Particle Technology Laboratory at CERTH/CPERI in Thessaloniki, Greece.


Diesel is the most efficient combustion engine currently available, says Konstandopoulos, but it comes with emissions of particulates, a soot made mainly of carbon, and Nitrogen Oxides (NOx) as by-products. IMITEC’s major innovation was to create the first particulate sensors for next generation diesel exhaust emission control systems.

Emission control invariably consists of a particulate filter, and the particulate sensor developed by IMITEC is vital for the so called ‘closed-loop’ control of this filter. As the filter is clogged by the collected particulate it needs to be cleaned by oxidation of the accumulated soot and this requires the raising of the exhaust temperature as diesel engines are so efficient the regular exhaust temperature is too low to oxidise soot. This process is termed ‘regeneration’.

The IMITEC sensor platform enables the activation of ‘regeneration’ in an adaptive and efficient fashion leading to fuel savings and increased reliability of the emission control system.

Sometimes filters need to regenerate after 500km, or 1000km, but to know exactly when, you need a sensor. "But the only way to know when to begin the regeneration process is to know the history of the filter, the driving profile of the vehicle," says Konstandopoulos. "It’s a key part of the whole system."

But IMITEC built more than sensors; they built an entire Emissions Control System for diesel engines, initially for light duty and passenger cars but the technology could be adapted for trucks. Particulate sensing and filter regeneration strategy, however, were the key parts of the project.

IMITEC developed two types of sensors during its research. Hardware sensors measure directly the values of particulates, temperature and pressure in the exhaust. Virtual sensors, on the other hand, are software that measure other sensors in the car and then apply an algorithm to discover a given measurement.

An example is the virtual sensor that computes the amount of soot load in a Diesel Particulate Filter from signals of filter pressure drop, exhaust flow and exhaust temperature. The output of these virtual sensors are used by the Engine Control Unit to adaptively and efficiently manage the emission control system.

All of IMITEC’s achievements go a long way to fulfilling the need for emission controls of the future.

It also attracted the intense interest of the automotive industry. The research centre of Fiat, one of Europe’s leading carmakers joined the project, as did UK-based Johnson Matthey, the world’s number one supplier of automotive catalysts, and Bosch Germany, the world’s leading supplier of exhaust sensors, fuel injection systems, and engine control units. The consortium also included Austria-based AVL, the largest independent automotive engineering company in the world and the CDL-ACT laboratory of the University of Leoben.

"We’ve been approached by many carmakers, and there are a lot of opportunities for spin-offs products, too," says Konstandopoulos. For example, the team may develop a highly portable unit for use in garages, to aid repairs and system monitoring.

Konstandopoulos believes the diesel emission control market could reach €10bn to €15bn a year by 2010. "Projections indicate that 50 per cent of European cars will be diesel by 2010, or 10m to 15m annually. If we estimate the cost of the entire emission control system at €1,000, which may be a reasonable estimate today, then you have a very important economic impact," he says.

The team developed a demonstrator of their Emissions Control System, fitted into a Fiat Ducato. "We have a demonstrator, in a real car, that will meet the anticipated Euro V emission standards expected to be finalised by the end of 2005," says Konstandopoulos. "This is another major result."

It’s just one more ambition achieved by a very ambitious project.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>