Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving improved automotive chip design

06.09.2005


A recently completed EU project developed better tools for integrated microcircuit design; achieved some world firsts in performance analysis and now may even spin off a new company to commercialise some of its new technologies.



The DEMAND project wanted to develop a reliable and cost-effective design process for ‘smart power’ integrated circuits. This type of microchip can integrate a wide variety of functions into one piece of silicon. The advantage is lower-cost and increased reliability.

It developed a design process specifically intended to improve the robustness and reliability of integrated circuits for the automotive industry.


Modern cars are typically riddled with microelectronics, used to control everything from the mirrors to combustion. Currently the industry’s drive is towards the increase of additional electrical functions and the integration of these in a smaller number of chips.

The trade-off, however, is an increasingly expensive chip design process. The sector demands robust chips that can withstand suddenly occurring not wanted high energetic electric pulses. These pulses can mean a massive increase in electrical current and a brief, but massive, rise in temperature within the chip’s circuits. Temperatures sometimes reach up to 1000 degrees centigrade for a few hundreds of nanoseconds. This can either disturb the chip function or physically destroy the chips.

"These stresses can occur either when the car is in operation, or even during manufacturing," says Dr Dionyz Pogany of the Institute for Solid State Electronics at the Vienna University of Technology, one of the DEMAND partners.

Typically this problem is encountered in cars during the switching of the different electrical machines or relays within the car, or an electrostatic discharge. This can destroy the delicate circuitry in the car’s control systems.

It’s hard to imagine that a simple effect like a static shock, experienced regularly by car users, could cause so much damage. But microchips, and particularly complex, integrated chips, are very small, and thus delicate. The effects of a discharge rise exponentially as a result.

The DEMAND team scored an exceptional coup by developing a new type of chip analysis system. The system verified the predictions of the improved simulations.

This analysis, called Transient Interferometric Mapping (TIM), uses infrared interferometry to reveal exactly what is happening on a chip when it receives a high current pulse. The simulation predicted the effects of stress while TIM revealed whether it actually occurred. The strength of this measurement technique is that for the first time the occurrence of moving current filaments could be experimentally proven.

The upshot is a detailed, non-invasive and non-destructive record of what exactly is happening on a chip when a high energetic pulse hits. DEMAND researchers were able to tell what problems occurred on the chip and that revealed what remedies were required to make them more robust. As a result, they helped refine the simulation models.

"In the past it was not possible to observe exactly what is happening in the chip when it receives this type of stress,” says Pogany. “TIM also has the ability to take a single snap-shot of the internal dynamics of the chip, another improvement achieved by the DEMAND team."

This is invaluable information for designers, because they can see exactly what happens to the chip, what systems fail, what systems survive, and why. It provides them with a blueprint to refine the device.

The combination of understanding the destructive mechanisms of energetic pulses, improving device simulation, particularly at temperature levels that have never been reached before, and then observing the impact of electrical or thermal stress on the device, means new chips can be developed at enormously reduced cost. Reliability will be improved. And opportunities to create new devices now exist.

"Right now we will certainly work with anyone who wants to use our TIM system to help develop their microchips, but we have not yet decided if it is feasible to launch a spin-off company," says Prof Erich Gornik, who was responsible for the DEMAND project at TU Vienna. "That is a definite possibility. A lot of people in the industry are excited by what our system can do to improve chip design.”

"In the meantime we want to develop more advanced models of our TIM technology. We want to make it more robust, to be able to sell it to failure analysis departments in semiconductor companies. Right now the TIM tool needs a lot a maintenance, and we hope to lower the maintenance required to make it more attractive for industry."

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>