Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urine and diesel reduce toxic emissions in traffic

06.09.2005


As of October 1 this year the EU requires that emissions of nitrogen oxides be reduced by 30 percent in trucks and 50 percent in diesel-powered cars. In 2008 these regulations will be become more stringent in Europe, and even more so in the US. The technical solution chosen by nearly all automakers to meet the requirements was originally developed by the Lund University in Sweden. Now these researchers are working on methods to reduce nitrogen oxide emissions even more.

Emissions of nitrogen oxides from heavy trucks account for 40 percent of nitrogen oxide emissions in traffic. This is seen as a major environmental problem. Thanks to the so-called three-way catalytic converter, exhaust from gasoline-powered passenger cars is relatively clean. On the other hand, it has been more problematic to clean up the exhaust from diesel-powered vehicles.

To come to grips with the problem, scientists at Lund University have developed the so-called Urea Method. This entails injecting a urine substance, NH2(CO)NH2, into the exhaust fumes in a catalytic converter in the exhaust pipe. This is the method that is now to be used.



“The urine substance is converted to ammonia, which reduces the nitrogen oxide to innocuous nitrogen gas, which occurs naturally in the air. It also reduces the amount of smaller, but harmful, residual particles such as diesel soot, carbon, and hydrocarbons,” says Ingemar Odenbrand, professor of chemical engineering and one of the prime movers in the project.

For the last few years the research team has been working instead with a method of NOx storage, which reduces emission levels even further. This method is expected to become the future standard.

The method is based on storing nitrogen oxides, NOx, in the catalytic converter and successively reducing them by repeated injections of hydrocarbons, often diesel fuel, every 60 or 90 seconds. The hydrocarbons are broken down into smaller hydrocarbons and carbon monoxide, which then reduces NOx to plain nitrogen.

“In our latest experiments we have managed to reduce emissions from 7 g of NOx per kWh to 3 g,” says Ingemar Odenbrand.

Using the full-scale exhaust and engine system constructed at LTH, the researchers are busy tweaking the variations in temperature, flow, and consistency that arise in authentic exhaust. The aim is to meet the environmental requirements that will take effect in the US from 2008, a reduction of 94 percent from today’s levels. That same year Europe will ratchet up its requirements to 2 g, a further reduction from the 3.5 g taking effect this autumn.

This work is being done in association with Volvo, Scania, and the catalytic converter manufacturer Johnson Matthey, as well as the Chalmers Institute of Technology in Göteborg when it comes to modeling and lab trials. Today Lund University is nearly the only actor, apart from the EPA in the US, publishing studies in the field with trials run on authentic exhaust.

Kristina Lindgärde | alfa
Further information:
http://www.lth.se
http://www.vr.se

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>