Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urine and diesel reduce toxic emissions in traffic

06.09.2005


As of October 1 this year the EU requires that emissions of nitrogen oxides be reduced by 30 percent in trucks and 50 percent in diesel-powered cars. In 2008 these regulations will be become more stringent in Europe, and even more so in the US. The technical solution chosen by nearly all automakers to meet the requirements was originally developed by the Lund University in Sweden. Now these researchers are working on methods to reduce nitrogen oxide emissions even more.

Emissions of nitrogen oxides from heavy trucks account for 40 percent of nitrogen oxide emissions in traffic. This is seen as a major environmental problem. Thanks to the so-called three-way catalytic converter, exhaust from gasoline-powered passenger cars is relatively clean. On the other hand, it has been more problematic to clean up the exhaust from diesel-powered vehicles.

To come to grips with the problem, scientists at Lund University have developed the so-called Urea Method. This entails injecting a urine substance, NH2(CO)NH2, into the exhaust fumes in a catalytic converter in the exhaust pipe. This is the method that is now to be used.



“The urine substance is converted to ammonia, which reduces the nitrogen oxide to innocuous nitrogen gas, which occurs naturally in the air. It also reduces the amount of smaller, but harmful, residual particles such as diesel soot, carbon, and hydrocarbons,” says Ingemar Odenbrand, professor of chemical engineering and one of the prime movers in the project.

For the last few years the research team has been working instead with a method of NOx storage, which reduces emission levels even further. This method is expected to become the future standard.

The method is based on storing nitrogen oxides, NOx, in the catalytic converter and successively reducing them by repeated injections of hydrocarbons, often diesel fuel, every 60 or 90 seconds. The hydrocarbons are broken down into smaller hydrocarbons and carbon monoxide, which then reduces NOx to plain nitrogen.

“In our latest experiments we have managed to reduce emissions from 7 g of NOx per kWh to 3 g,” says Ingemar Odenbrand.

Using the full-scale exhaust and engine system constructed at LTH, the researchers are busy tweaking the variations in temperature, flow, and consistency that arise in authentic exhaust. The aim is to meet the environmental requirements that will take effect in the US from 2008, a reduction of 94 percent from today’s levels. That same year Europe will ratchet up its requirements to 2 g, a further reduction from the 3.5 g taking effect this autumn.

This work is being done in association with Volvo, Scania, and the catalytic converter manufacturer Johnson Matthey, as well as the Chalmers Institute of Technology in Göteborg when it comes to modeling and lab trials. Today Lund University is nearly the only actor, apart from the EPA in the US, publishing studies in the field with trials run on authentic exhaust.

Kristina Lindgärde | alfa
Further information:
http://www.lth.se
http://www.vr.se

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>