Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid car makes city driving quick and clean

13.07.2005


EUREKA project E! 2512 MINIMOBIL has developed a vehicle specifically designed for life in Europe’s congested cities that uses a hybrid drive combining the environmental benefits of an electric motor with the range of a petrol engine. The compact city car relieves congested roads and reduces urban pollution.



The MINIMOBIL measures a slim two by one metres, and is little bigger than a motorbike. It is ideal for swiftly moving through traffic, while doors positioned at the front and back make parking simple – in fact four MINIMOBILs can fit into a standard parking space.

“MINIMOBIL is designed to cater for the needs of personal city transport where typically one person is travelling only, with options to cater for more passengers, luggage or sports equipment when needed,” explains Jiri Hofman, project manager at Czech lead partner Dioss Elcom Spol.


Low emission solution

Developed by partners from Austria and the Czech Republic, with a budget of €1.05 million, MINIMOBIL is set to succeed where other electric cars have faltered because it has overcome the problems of short operating range, heavy expensive batteries, long charging time and poor heating by using a hybrid drive. The MINIMOBIL can travel 30 to 50 km by battery alone and up to 350 km when using its low emission petrol engine as well.

The hybrid drive is the heart of the MINIMOBIL, combining an internal combustion engine and an electric motor driven by rechargeable batteries. It offers low energy consumption and low emissions as the hybrid drive uses the environmentally clean electric motor for starting and braking – about 30% of the total journey – and can drive the vehicle continuously at speeds of up to 60 km/h. When more power, higher speeds or longer distances are required, the drive switches to the more powerful petrol engine.

If the driver is confident of a recharging source, the electric motor can be used for city journeys of up to 30 km. Alternatively, preference can be given to the petrol engine, not only saving battery power but also recharging it during the journey. This option is ideal for longer journeys or when a recharging source cannot be guaranteed.

Environmental benefits

“Energy consumption and emissions are much lower in a MINIMOBIL, as it cuts pollutants considerably through use of the electric motor,” says Hofman. “Its low weight – half that of an average small car – and compactness ease city driving and parking.”

In addition, the MINIMOBIL is a very flexible vehicle. The back cabin is adaptable and can be adjusted in stages to carry passengers, shopping or luggage. It can also accommodate wheelchairs, or a ski or bike carrier.

A third prototype is currently being produced as further partners are being sought to fill the expected huge demand for MINIMOBIL vehicles. Initial production will be several thousands of cars, and this is expected to grow to hundreds of thousands, once the vehicles are commercially launched.

“EUREKA played a vital role in the development of the MINIMOBIL,” adds Hofman. “It not only helped us to find the partner we needed, but also gave the project increased recognition and credibility. We’ve already had considerable interest from the USA, but want to launch the MINIMOBIL first in Europe.”

Paul McCallum | alfa
Further information:
http://www.eureka.be/files/:631617

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>