Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid car makes city driving quick and clean

13.07.2005


EUREKA project E! 2512 MINIMOBIL has developed a vehicle specifically designed for life in Europe’s congested cities that uses a hybrid drive combining the environmental benefits of an electric motor with the range of a petrol engine. The compact city car relieves congested roads and reduces urban pollution.



The MINIMOBIL measures a slim two by one metres, and is little bigger than a motorbike. It is ideal for swiftly moving through traffic, while doors positioned at the front and back make parking simple – in fact four MINIMOBILs can fit into a standard parking space.

“MINIMOBIL is designed to cater for the needs of personal city transport where typically one person is travelling only, with options to cater for more passengers, luggage or sports equipment when needed,” explains Jiri Hofman, project manager at Czech lead partner Dioss Elcom Spol.


Low emission solution

Developed by partners from Austria and the Czech Republic, with a budget of €1.05 million, MINIMOBIL is set to succeed where other electric cars have faltered because it has overcome the problems of short operating range, heavy expensive batteries, long charging time and poor heating by using a hybrid drive. The MINIMOBIL can travel 30 to 50 km by battery alone and up to 350 km when using its low emission petrol engine as well.

The hybrid drive is the heart of the MINIMOBIL, combining an internal combustion engine and an electric motor driven by rechargeable batteries. It offers low energy consumption and low emissions as the hybrid drive uses the environmentally clean electric motor for starting and braking – about 30% of the total journey – and can drive the vehicle continuously at speeds of up to 60 km/h. When more power, higher speeds or longer distances are required, the drive switches to the more powerful petrol engine.

If the driver is confident of a recharging source, the electric motor can be used for city journeys of up to 30 km. Alternatively, preference can be given to the petrol engine, not only saving battery power but also recharging it during the journey. This option is ideal for longer journeys or when a recharging source cannot be guaranteed.

Environmental benefits

“Energy consumption and emissions are much lower in a MINIMOBIL, as it cuts pollutants considerably through use of the electric motor,” says Hofman. “Its low weight – half that of an average small car – and compactness ease city driving and parking.”

In addition, the MINIMOBIL is a very flexible vehicle. The back cabin is adaptable and can be adjusted in stages to carry passengers, shopping or luggage. It can also accommodate wheelchairs, or a ski or bike carrier.

A third prototype is currently being produced as further partners are being sought to fill the expected huge demand for MINIMOBIL vehicles. Initial production will be several thousands of cars, and this is expected to grow to hundreds of thousands, once the vehicles are commercially launched.

“EUREKA played a vital role in the development of the MINIMOBIL,” adds Hofman. “It not only helped us to find the partner we needed, but also gave the project increased recognition and credibility. We’ve already had considerable interest from the USA, but want to launch the MINIMOBIL first in Europe.”

Paul McCallum | alfa
Further information:
http://www.eureka.be/files/:631617

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>