Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving improvements to night vision

15.06.2005


In a bid to reduce the annual death of more than 50,000 people and the countless severe injuries on Europe’s roads, future onboard night vision systems have been developed that highlight unexpected obstacles and improve driver visibility.

The system, developed by a team of carmakers, automotive suppliers and university researchers under the IST programme’s EDEL project, is expected to increase safety by highlighting unexpected, sudden events; improving visibility of road signs; assisting drivers on unknown roads and the timely detection of obstacles invisible to the human eye under night driving conditions.

The 30 per cent of road accidents that happen at night involve half of the people killed on the roads. Darkness is a major risk factor: while drivers travel just 28 per cent of their miles at night, 55 per cent of all motor fatalities occur after sunset. Ninety per cent of a driver’s reaction depends on vision, which is severely limited at night. Depth perception and colour recognition are also compromised after sunset. Other dangers besides reduced visibility include fatigue, drowsiness, blurring of peripheral vision and impairment in judgement of distances and movements.



The numbers behind these statistics do not reveal how many accidents occurred because of lack of visibility at night, but introducing an effective and easy-to-use system to enhance the driver’s perception would help prevent accidents and ultimately reduce fatalities and injuries for drivers, cyclists and pedestrians. For example, a pedestrian wearing dark clothes is only visible at a distance of 100 feet to a driver using low beams.

“We designed and developed different technological solutions for future onboard night vision systems,” says project coordinator Luisa Andreone, Centro Ricerche Fiat, Italy. “The different solutions can be compared on a cost/benefit basis and will offer the market modular solutions that will enable carmakers to select the most suitable for their vehicles.”

By conducting focus groups with potential customers, project partners identified the factors of acceptance by individual users that would likely determine the ultimate decision to purchase or use the system. To determine this, they drew on insights from a panel of 35 drivers attending seven focus group sessions and existing knowledge on major risk factors of night driving.

Following an analysis of customer benefit and technological benchmarking, they designed the system architecture and component design for an advanced vision enhancement system for night driving based on:

  • An automotive-specific Complementary Metal Oxide
    Semiconductor (CMOS) camera.
  • A near infrared sensor light source integrated into
    a newly designed vehicle headlamp.
  • An innovative, user-centred human machine interface.

New automotive lighting equipment was developed. Because of the near infrared CMOS sensor, no blinding can occur from glare when two vehicles cross. The sensor is synchronized with the infrared light emitted by a specific headlamp developed within the project.

The scene in front of the car is illuminated by near infrared laser diode arrays. A CMOS specific-camera captures the images in front of the vehicle for further processing and continuously captures images from the road scene ahead, while at the same time taking data from the imager unit. Project partners addressed the issue of enhancing the input video stream, which is encoded in a 10 bit grey-scale frame, according to the camera format specification. For faster performance, the 10-bit 1024 grey-scale format of the camera must be mapped to 8-bit with less grey-scale levels. Three different solutions were developed in this area.

The image data is transmitted to the Image Processing Module and eventually to the windscreen, which features an infrared transparent area. A user-friendly human machine interface displays the relevant information.

Two different modules were designed offering a direct-view display inside the dashboard and a head-up display installed on top of the dashboard in view of the driver’s eye. The main components of both are a display, a light source and the interfaces. The head-up display includes a mirror that magnifies and projects the image coming from the display.

EDEL’s systems are still technological prototypes and are subject to technological and human factor tests with end users. Says Andreone: “Results are expected to show that drivers benefit from the early detection of potential obstacles while driving at night.”

The project will end in July 2005 and project results will be presented in an International workshop that will be held in Karlsruhe (Gemany) on 13 July.

The EDEL consortium expects the system to be on the market in the next couple of years. Plans for further development aim to make the system interoperable with other onboard driver supports systems, such as those for lane change.

Other issues being addressed by the consortium include detecting lanes and bounding lines until the horizon, as well as recognising cars without lights, static obstacles, pedestrians and cyclists.

Tara Morris | alfa
Further information:
http://www.edel-eu.org

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>