Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Capsule For Insulin

30.05.2005


The Moscow chemists have suggested a way to produce insulin in pills instead of injections. They have developed polymeric capsules that would protect insulin from destructive effect of digestive juices. The research has been accomplished with financial support of the Ministry of Industry, Science and Technology of Russia within the framework of international scientific cooperation.



Once insulin appeared, diabetes mellitus is no longer a verdict for the patients. However, to control the sugar level in blood, diabetics have to make injections on a regular basis up to several times a day, which undoubtedly makes their life more difficult. The lack of timely injection may result in fatal outcome. The pills would significantly simplify their life. However, the fact that insulin gets quickly destroyed when it appears in acid medium of the stomach does not exclude but significantly complicates creation of pilled insulin. Researchers of the Chemical Faculty, Lomonosov Moscow State University, have found the way to protect insulin from digestive juices’ destructive effect and to preserve the ability to perform its function.

To introduce insulin in the organism, the Russian chemists suggested that multi-layer polymeric capsules should be used. These polymeric capsules are stable and remain intact in acid medium, and in neutral medium, capsules gradually excrete insulin.


To create such capsules, the researchers used two polymers - positive protamin and negative dextransulphate. They formed layers in series one upon the other according to the plus towards minus principle and made a multi-layer covering around the insulin filling, which makes up to 85 percent of the entire microparticle.

Insulin covered by protective capsule is stable at pH from 1.7 to 5 units, when pH increases higher than 5 units, insulin gets released. Further pH increase up to 8 units results in accelerated protein release rate. Such behavior of particles occurs due to the fact that at pH higher than 5.5 insulin acquires negative charge and its bond with the negatively charged polymer of the first layer - dextransulphate – gets destroyed.

Such pH-dependence of protective polymeric capsules provides fundamental capability to create insulin in pills. In the stomach, where medium is extremely acid, these capsules would protect the insulin molecule and would not allow its destruction. Having gone through the stomach and having reached the small intestine and ileum, where pH reaches 6 to 8 units, capsules will start to excrete insulin intensely. In thin intestines, insulin can penetrate blood. Therefore, the capsule determines by itself where insulin should be retained in closed form and where it should be released.

The polymers used to create capsules belong to natural biodegradable polymers. After utilization they get easily destroyed by enzymes and removed from the organism without causing any harm to health.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>