Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-Blinding Headlights

01.03.2005


A new way to protect the eyes of drivers from the light of oncoming cars is found by Russian scientists. The technology for production of new anti-blinding systems is under development. Finance is extended by the Foundation for Assistance to Small Innovative Enterprises (FASIE) under the program "Start".

Russian scientists from Dimitrovgrad (Ul’yanovsk area) have designed a new non-blinding headlight system. Its use in cars will significantly decrease the risk of driving at night, because the oncoming light will be duller, while the road in front will be lightened brighter. First studies were conducted at the expense of the scientists. Now, with the support of FASIE, the innovation is adapted to industrial making and will probably be launched into the mass production.

A need for an anti-blinding system is obvious to everyone that drove at night and was blinded for a moment by the headlight of an oncoming car. Only very few drivers use, in accordance with the rules, the existing switch from distant to close light in order not to blind ones who drive in oncoming cars. Of course, there are smart systems of night vision based on infrared radiation, but they are too expensive for common cars.



Solution found by the Russian specialists seems paradoxical at first - darkening the windscreen! However, such darkening certainly won’t be permanent, but pulsing.

The new system consists of the following components: gas-discharge light (xenon lamp); electronic block switching the light on and off; windscreen with an optical cover, LC-locks and changeable transparency; and the electronic chip that controls the whole system. It works as follows. The switch block sends an electric impulse to headlights generating a flash that lightens the road, while the optical cover is "open" and the windscreen is transparent. In a fraction of a second, the headlights are off and optical screen is "closed", which darkens the windscreen by more than 50 times.

A high frequency of flashing allows the human eye to perceive a continuous light (like in a film, where quickly changing images give us an illusion of movement), so a driver can see the road very well. A part-time darkening of the windscreen protects the driver’s eyes from the blinding light of an oncoming car.

For avoiding coincidence of flashing rhythms in cars coming from opposite directions, the inventors installed a special program for random frequency of flashing (the average frequency still allowing an illusion if continuous light). Thus, it is very improbable that your headlight flashes into an open screen in the oncoming car.

It should also be mentioned that xenon lamps are three times as powerful as usual halogen lamps and have a light spectrum close to that of daylight. Therefore, with the use of xenon lamps drivers can better see the road and sidewalks.

Soon this amazing system will appear in shops. One of the inventors, Alexander Polovinkin, explains: "Principal technical problems have already been solved, and all necessary details are available. Now we need to optimize the system and improve its operation parameters and design. Our first demonstration sample works well. Probably in two or three years we can produce the first factory-made set of our anti-blinding system".

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>