Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists close in on ’superbrakes’ for cars

01.02.2005


A theoretical study of friction between solids that looks at the process just one molecule at a time could soon lead to a more effective way to stop cars in an emergency than simply slamming on the brakes or using ABS. This research is reported today in a special Einstein Year issue of the New Journal of Physics (www.njp.org) published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellschaft).



Scientists and engineers have assimilated an enormous amount of empirical information on the processes taking place when two surfaces rub against each other producing friction. They have even devised numerous physical rules and laws to explain these forces. These laws are adequate for most practical purposes, but according to Peter Reimann and colleagues, our understanding of how friction is traced back to the behaviour of solids at the molecular level where surfaces meet is still far from complete. He and his colleagues hope to improve our fundamental understanding of the microscopic laws governing materials in contact.

"In our work, we consider theoretically a somewhat simplified setup," explains Reimann, "This consists of a single, very small point, which is pulled over an atomically flat surface." This, Reimann explains further, is an exceptionally simple and well controlled "minimal’" system that allows he and his team to study the forces between the point and the surface. Experimentalists studying friction use a similar setup to measure the actual forces involved.


Reimann’s team begins with a mathematical description of the system that takes into account the forces between the point and the surface at the microscopic level as the point is drawn across the surface. They found that their model could explain previous experimental findings confirming its validity. However, they have also drawn a surprising conclusion. The model suggests that the frictional force increase as the point begins to move, then reaches a maximum as it speeds up, and then falls if the point continues to be accelerated across the surface.

"We find this prediction quite surprising and experimentalists have already signalled their excitement to test it in their labs," says Reimann. If similar behaviour were seen with the friction between car tires and the road, then there are important implications for road safety. The findings suggest that neither locking the wheels nor the usual ABS-system is the most effective method of stopping a car in the shortest possible stopping distance, explains Reimann. He says that a compromise between the two approaches to braking could be much more effective.

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>