Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists close in on ’superbrakes’ for cars

01.02.2005


A theoretical study of friction between solids that looks at the process just one molecule at a time could soon lead to a more effective way to stop cars in an emergency than simply slamming on the brakes or using ABS. This research is reported today in a special Einstein Year issue of the New Journal of Physics (www.njp.org) published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellschaft).



Scientists and engineers have assimilated an enormous amount of empirical information on the processes taking place when two surfaces rub against each other producing friction. They have even devised numerous physical rules and laws to explain these forces. These laws are adequate for most practical purposes, but according to Peter Reimann and colleagues, our understanding of how friction is traced back to the behaviour of solids at the molecular level where surfaces meet is still far from complete. He and his colleagues hope to improve our fundamental understanding of the microscopic laws governing materials in contact.

"In our work, we consider theoretically a somewhat simplified setup," explains Reimann, "This consists of a single, very small point, which is pulled over an atomically flat surface." This, Reimann explains further, is an exceptionally simple and well controlled "minimal’" system that allows he and his team to study the forces between the point and the surface. Experimentalists studying friction use a similar setup to measure the actual forces involved.


Reimann’s team begins with a mathematical description of the system that takes into account the forces between the point and the surface at the microscopic level as the point is drawn across the surface. They found that their model could explain previous experimental findings confirming its validity. However, they have also drawn a surprising conclusion. The model suggests that the frictional force increase as the point begins to move, then reaches a maximum as it speeds up, and then falls if the point continues to be accelerated across the surface.

"We find this prediction quite surprising and experimentalists have already signalled their excitement to test it in their labs," says Reimann. If similar behaviour were seen with the friction between car tires and the road, then there are important implications for road safety. The findings suggest that neither locking the wheels nor the usual ABS-system is the most effective method of stopping a car in the shortest possible stopping distance, explains Reimann. He says that a compromise between the two approaches to braking could be much more effective.

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>