Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists close in on ’superbrakes’ for cars

01.02.2005


A theoretical study of friction between solids that looks at the process just one molecule at a time could soon lead to a more effective way to stop cars in an emergency than simply slamming on the brakes or using ABS. This research is reported today in a special Einstein Year issue of the New Journal of Physics (www.njp.org) published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellschaft).



Scientists and engineers have assimilated an enormous amount of empirical information on the processes taking place when two surfaces rub against each other producing friction. They have even devised numerous physical rules and laws to explain these forces. These laws are adequate for most practical purposes, but according to Peter Reimann and colleagues, our understanding of how friction is traced back to the behaviour of solids at the molecular level where surfaces meet is still far from complete. He and his colleagues hope to improve our fundamental understanding of the microscopic laws governing materials in contact.

"In our work, we consider theoretically a somewhat simplified setup," explains Reimann, "This consists of a single, very small point, which is pulled over an atomically flat surface." This, Reimann explains further, is an exceptionally simple and well controlled "minimal’" system that allows he and his team to study the forces between the point and the surface. Experimentalists studying friction use a similar setup to measure the actual forces involved.


Reimann’s team begins with a mathematical description of the system that takes into account the forces between the point and the surface at the microscopic level as the point is drawn across the surface. They found that their model could explain previous experimental findings confirming its validity. However, they have also drawn a surprising conclusion. The model suggests that the frictional force increase as the point begins to move, then reaches a maximum as it speeds up, and then falls if the point continues to be accelerated across the surface.

"We find this prediction quite surprising and experimentalists have already signalled their excitement to test it in their labs," says Reimann. If similar behaviour were seen with the friction between car tires and the road, then there are important implications for road safety. The findings suggest that neither locking the wheels nor the usual ABS-system is the most effective method of stopping a car in the shortest possible stopping distance, explains Reimann. He says that a compromise between the two approaches to braking could be much more effective.

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>